看板 Math 關於我們 聯絡資訊
Q: Let p, q: distinct primes. J=proper subgroup of the additive group of integers which contains exactly 3 elements of the set {p, p+q, pq,p^q, q^p} Which 3 elements are in J? (A) pq, p^q, q^p (B) p, pq, p^q (C) p, p^q, q^p (D) p, p+q, pq Ans: B 詳解寫說: any additive group of integers Z is in the form c*Z, c is in Z 剛開始做這題的時候 覺得那五個elements不可能取三個還能closed in addition, 除非有個q, 覺得這題impossible.... 但是他還真的有解不是typo.... 只是看了解還是疑惑 有人能幫忙解答嗎?謝謝` -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49
empty24 :J 裡面不可以找到兩個互質的數 否則 J = Z 04/17 22:02
empty24 :用刪去法就剩下 B 選項 04/17 22:03
agnes12 :瞭解!! Thx~~ 04/18 20:24