看板 Math 關於我們 聯絡資訊
※ 引述《ericakk (ericakk)》之銘言: : 空間中兩點 A(0,-7,1) B(3,2,2) : __ __ : 在x軸上找一點P,使得PA+PB最短,P點是? : 答案:(15/7,0,0) minimize (x^2+7^2+1)^{1/2} + ((x-3)^2+2^2+2^2)^{1/2} (x^2+50)^{1/2}+((x-3)^2+8)^{1/2} You can transform this problem to " A(0,√50), B(3,√8) Find P on x-axis to make PA+PB minimum." optical theorem, mirror image of B is C(3,-√8) AC line (0,√50) + t (-3,(√50 + √8)) intersects x-axis at t = -√50 / (√50 + √8) = -5/(5+2)=-5/7 hence, minimum occurs at x = 15/7 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.194.96.239
coolbetter33:good轉到二維就容易了 04/18 15:52
ericakk :非常感謝!! 04/19 13:39