看板 Math 關於我們 聯絡資訊
※ 引述《Intercome (今天的我小帥)》之銘言: : C(n,1) + C(n,2)/2 + C(n,3)/3 + ... + C(n,n)/n = A : 這是不是沒有辦法求出n的一般式呢? 再請各位高手解答,謝謝~~ Let f(x) = Σ[k;1,n] (1/k) C(n,k) x^k f(0) = 0 then A = f(1) f'(x) =Σ[k,1,n] C(n,k) x^{k-1} x f'(x) = (1+x)^n - 1 f'(x) = (1+x)^n / x - 1/x let 1+x = u f'(u-1) = -u^n / (1-u) + 1/(1-u) = (1-u^n)/(1-u) = 1+u+u^2+...+u^{n-1} f(u-1) = u + u^2/2 + u^3/3 + ... + u^n / n + C f(0) = 0 then C = -(1 + 1/2 + ... + 1/n) denote g_n (x) = x + x^2/2 + x^3/3 + ... + x^n/n then A = f(1) = g_n(2) - g_n(1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.194.224.241
Intercome :原來如此 感謝J大喔 05/04 18:32