推 Intercome :原來如此 感謝J大喔 05/04 18:32
※ 引述《Intercome (今天的我小帥)》之銘言:
: C(n,1) + C(n,2)/2 + C(n,3)/3 + ... + C(n,n)/n = A
: 這是不是沒有辦法求出n的一般式呢? 再請各位高手解答,謝謝~~
Let
f(x) = Σ[k;1,n] (1/k) C(n,k) x^k
f(0) = 0
then A = f(1)
f'(x) =Σ[k,1,n] C(n,k) x^{k-1}
x f'(x) = (1+x)^n - 1
f'(x) = (1+x)^n / x - 1/x
let 1+x = u
f'(u-1) = -u^n / (1-u) + 1/(1-u)
= (1-u^n)/(1-u)
= 1+u+u^2+...+u^{n-1}
f(u-1) = u + u^2/2 + u^3/3 + ... + u^n / n + C
f(0) = 0 then C = -(1 + 1/2 + ... + 1/n)
denote g_n (x) = x + x^2/2 + x^3/3 + ... + x^n/n
then A = f(1) = g_n(2) - g_n(1)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.194.224.241