※ 引述《newversion (海納百川天下歸心)》之銘言:
: 請問這是什麼類型的微方? 我令 z=ln x 下去做可以得到答案,但頗煩
: Let y = x^r ,then we substitute it.
: We have x^r [(r -1)r(r- 2) + r - 1] = 0.
: => (r-1)^3 = 0
: => r=1 三重根
: Then by "checking detail" the solution is
: blah blah
: 這裡的 "checking detail" 是什麼東東?
: 好像每重根一次就要多乘一項 lnx
This is called Euler-Cauchy equation
let x=exp(t), t=ln(x)
dy
and, D= ──
dt
than, we could get x^3 y"'+xy'-y=0 => D(D-1)(D-2)y+Dy-y=0
=> (D-1)^3 y=0
=> y(t)= Aexp(t)+ Btexp(t)+Ct^2exp(t)
=> y(x)= Ax+Bxlnx+Cx[(lnx)^2]
A、B、C are constants
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.243.103.61