推 Frobenius :推正解 05/07 23:21
※ 引述《newversion (海納百川天下歸心)》之銘言:
: 請問這是什麼類型的微方? 我令 z=ln x 下去做可以得到答案,但頗煩
: 以下是解答的方法
: Let y = x^r ,then we substitute it.
: We have x^r [(r -1)r(r- 2) + r - 1] = 0.
: => (r-1)^3 = 0
: => r=1 三重根
: Then by "checking detail" the solution is
: blah blah
: 這裡的 "checking detail" 是什麼東東?
: 好像每重根一次就要多乘一項 lnx
n
n d y d
1. x ----- = D (D -1)...(D - n + 1)(y), D ≡ --- , z = ln x
n z z z z dz
dx
Proof:
dy dy dz dy
n = 1, x --- = x --- --- = --- , 成立
dx dz dx dz
k
k d y
Assume n = k, x ------ = D (D - 1)...(D - k +1)(y)
k z z z
dx
For n = k + 1,
k+1 k k k
k+1 d y k+1 d d y k+1 d d y dz k d d y
x ------- = x --- (----) = x ---(---- ) --- = x ---(----)
k+1 k k k
dx dx dx dz dx dx dz dx
k
z d y -kz
z = ln x => x = e => ---- = e D (D - 1)...(D - k + 1)(y) by hypothesis
k z z z
dx
k+1
k+1 d y kz -kz
x ------- = e D (e D (D -1)...(D - k +1)(y))
k+1 z z z z
dx
kz -kz
= [e D D (D - 1)...(D - k + 1)(y) +
e z z z z
-kz
-ke D (D - 1)...(D - k + 1)(y)]
z z z
= D D (D - 1)...(D - k + 1)(y) - k D (D - 1)...(D - k + 1)(y)
z z z z z z z
= D (D - 1)...(D - k + 1)(D - k)(y), 也成立
z z z z
根據數學歸納法
n
n d y
x --- = D (D - 1)...(D - n + 1)(y) 對所有正整數 n
n z z z
dx
2.
(n) (n-1)
a(n)D (y) + a(n-1) D (y) + ... + a(1)D (y) + a(0) = 0
z z z
λz m(λ)-1
的解一定是 e (c1 + c2z +...+cn z ) 的線性組合組成, λ是特徵方程式的根
m(λ)是對應重根數
z = ln x
還原可得
λ m(λ)-1
x (c1 + c2 lnx + ... + cn(ln x) )
r
所以解答才直接代 x 進去解
有重根就補ln x 的 power
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.251.187.196