看板 Math 關於我們 聯絡資訊
※ 引述《newversion (海納百川天下歸心)》之銘言: : 請問這是什麼類型的微方? 我令 z=ln x 下去做可以得到答案,但頗煩 : 以下是解答的方法 : Let y = x^r ,then we substitute it. : We have x^r [(r -1)r(r- 2) + r - 1] = 0. : => (r-1)^3 = 0 : => r=1 三重根 : Then by "checking detail" the solution is : blah blah : 這裡的 "checking detail" 是什麼東東? : 好像每重根一次就要多乘一項 lnx n n d y d 1. x ----- = D (D -1)...(D - n + 1)(y), D ≡ --- , z = ln x n z z z z dz dx Proof: dy dy dz dy n = 1, x --- = x --- --- = --- , 成立 dx dz dx dz k k d y Assume n = k, x ------ = D (D - 1)...(D - k +1)(y) k z z z dx For n = k + 1, k+1 k k k k+1 d y k+1 d d y k+1 d d y dz k d d y x ------- = x --- (----) = x ---(---- ) --- = x ---(----) k+1 k k k dx dx dx dz dx dx dz dx k z d y -kz z = ln x => x = e => ---- = e D (D - 1)...(D - k + 1)(y) by hypothesis k z z z dx k+1 k+1 d y kz -kz x ------- = e D (e D (D -1)...(D - k +1)(y)) k+1 z z z z dx kz -kz = [e D D (D - 1)...(D - k + 1)(y) + e z z z z -kz -ke D (D - 1)...(D - k + 1)(y)] z z z = D D (D - 1)...(D - k + 1)(y) - k D (D - 1)...(D - k + 1)(y) z z z z z z z = D (D - 1)...(D - k + 1)(D - k)(y), 也成立 z z z z 根據數學歸納法 n n d y x --- = D (D - 1)...(D - n + 1)(y) 對所有正整數 n n z z z dx 2. (n) (n-1) a(n)D (y) + a(n-1) D (y) + ... + a(1)D (y) + a(0) = 0 z z z λz m(λ)-1 的解一定是 e (c1 + c2z +...+cn z ) 的線性組合組成, λ是特徵方程式的根 m(λ)是對應重根數 z = ln x 還原可得 λ m(λ)-1 x (c1 + c2 lnx + ... + cn(ln x) ) r 所以解答才直接代 x 進去解 有重根就補ln x 的 power -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.187.196
Frobenius :推正解 05/07 23:21