看板 Math 關於我們 聯絡資訊
※ 引述《ericakk (ericakk)》之銘言: : 已知平面上的點排列:P_1(x_1,y_1)、P_2(x_2,y_2)、...、P_n(x_n,y_n) : 其中各點座標定義如下: : x_1=1 , y_1=0, x_n+1= 3/5 x_n + 2/5 y_n , y_n+1= 2/5 x_n + 3/5 y_n , : 試求:(1)x_n + αy_n =β(x_n-1 + αy_n-1)的正實數α、β? : (2)lim p_n = (a,b),則(a,b)? : n→∞ (1) x(n) + αy(n) = (3/5 + 2α/5)x(n-1) + (2/5 + 3α/5)y(n-1) => 3/5 + 2α/5 = β --- (1) , 2/5 + 3α/5 = αβ --- (2) (1)+(2) => 1 + α = β(1 + α) => (β - 1)(1 + α) = 0 --- (3) 根據(1), (3) => α = -1 , β = 1/5 or α = 1, β = 1 因為α、β都是正實數, 所以 α = 1, β = 1 (2) 根據(1), x(n) + y(n) = x(n-1) + y(n-1) = ... = x(1) + y(0) = 1 => y(n) = 1 - x(n) 又 x(n) = 3/5 x(n-1) + 2/5 y(n-1) => x(n) = 1/5 x(n-1) + 2/5 找出 x(n) - γ = 1/5(x(n-1) - γ) 的 γ => x(n) = 1/5 x(n-1) + 4γ/5 => γ = 1/2 x(n) - 1/2 x(n-1) - 1/2 x(2) - 1/2 n-1 => -------------- * ------------- * ... * ------------ = (1/5) x(n-1) - 1/2 x(n-2) - 1/2 x(1) - 1/2 n-1 => x(n) = 1/2 + 1/2 * (1/5) n-1 y(n) = 1 - x(n) = 1/2 - 1/2 *(1/5) 所以 lim p_n = lim (x(n), y(n)) = (1/2, 1/2) n→∞ n→∞ 其實用α = -1 , β = 1/5 也可以解, 寫出一些關鍵: n-1 n-1 x(n) - y(n) = (1/5) (x(1)-x(0)) = (1/5) n-1 => x(n) = y(n) + (1/5) , y(n) = 2/5 x(n-1) + 3/5 y(n-1) n-2 => y(n) = 2/5 * (1/5) + y(n-1) n-2 k => y(n) = 2/5 Σ (1/5) k=0 n-2 k n x(n) = 2/5 Σ (1/5) + (1/5) k=0 ∞ k n lim x(n) = 2/5 Σ (1/5) + lim (1/5) = 2/5 * [1/(1-1/5)] = 1/2 n->∞ k=0 n->∞ ∞ k lim y(n) = 2/5 Σ (1/5) = 1/2 n->∞ k=0 -- ※ 發信站: 批踢踢實業坊(ptt.cc)
ericakk :感恩你!!祝福你這學期all pass喔!! ^_^ 05/15 18:48
※ 編輯: yueayase (36.236.229.213), 03/20/2015 21:24:11