看板 Math 關於我們 聯絡資訊
※ 引述《GuanSi (冠希)》之銘言: : 2.a,b,c為互不相等的正整數 : a,b,c的倒數和為13/210 : 求a+b+c最小值 If a,b,c are real then (a+b+c)(1/a+1/b+1/c) >= (1+1+1)^2 (a+b+c) >= 9*210/13 = 145.38... min(a+b+c) occurs at a=b=c=3*210/13=630/13 --------------- Consider 630=2*3^2*5*7 If a,b,c are integers we assume a=630/h, b=630/k, c=630/q then h+k+q=39 we assume a<b<c, then 3/a > 13/210, a<630/13 and 1/a<13/210, a>630/39 possible h is 14,15,18,21,30,35 (i) h=14 a=630/14, b=630/(12-r), c=630/(13+r) when r=2 , b,c are integers a=45, b=630/10=63, c=630/15=42 a+b+c=150 actually, 150 is the minimum. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.194.224.241 ※ 編輯: JohnMash 來自: 123.194.224.241 (05/22 03:36)