看板 Math 關於我們 聯絡資訊
Starting at some fixed time, satellites are launched at times of a Poisson process with rate lambda. After an independent amount of time having distribution functino F and mean mu, the satellite stops working. Let X(t) be the number of satellites working at time t. Find a)the distribution of X(t). b) as t goes to infinity, show the limiting distribution is poisson(lambda*mu) http://tinyurl.com/oznez4r http://tinyurl.com/qb6kghw 上面是talkstats跟mathhelpforum的答案 可是要怎麼證明P(Xi+Ti>t)=(1/t)*E(min(Ti,t)) where Ti is the lifespan of i-th satellite (which launched at time Xi) 第一個連結有P(Xi+Ti>t)的答案 但是我看不出來把1/t提出來後剩下那一部分是E(min(Ti,t)) 所以想請教一下板友 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 172.251.76.200
nourri :我做change of variable最後得到E(Ti)as t->infinity 05/30 12:17