看板 Math 關於我們 聯絡資訊
※ 引述《bajifox (嘖)》之銘言: : let a and n>1 be any integers such that a^(n-1)≡1(mod n) : but a^d not≡ 1 for every proper divisor d of n-1 : ^^^^^ : 表示不同餘 XD : prove that n is a prime : 哈哈不太知道怎麽做 : 謝謝 Suppose n is not a prime. Since a^(n-1)≡1(mod n), a is not divisible by n. φ(n) By Euler's Theorem, a ≡ 1(mod n) Note that φ(n) < n - 1 since there is a number k < that divides n. By assumption, a^d not≡ 1 for every proper divisor d of n-1 So, the order of a modulo n is n-1. (If not, let k < n-1 be the order of a modulo n. Then k | n-1 since a^(n-1)≡ 1(mod n), which contradicts the above assumption.) Then, n-1 | φ(n). However, φ(n) < n-1. Then, φ(n) can't be divisible y n-1. A contradiction! So, n is a prime. Remark: (1)其實可以改成直接證明法, 利用φ(n) ≦ n-1 for all n 和 n-1 | φ(n) 可得到 φ(n) = n-1 => n 是質數 (2)感覺可以用Z 這個cyclic group來得出n is a prime, 但我不熟, 不確定怎麼寫 n -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.163.216 ※ 編輯: yueayase 來自: 111.251.163.216 (06/08 00:27)
Vulpix :a是ring Z_n的unit,所以在unit group裡面,由條件 06/08 00:50
Vulpix :知道a的order是n-1,代表Z_n\{0}都是unit。 06/08 00:52
Vulpix :所以n不能有proper divisor,否則Z_n就有zero div.了 06/08 00:54
bajifox :哈哈太感謝了 06/09 11:42