看板 Math 關於我們 聯絡資訊
※ 引述《zxcc79 (@!@)》之銘言: : 1 : y=sin^2(cos(tan(x^2+1))) 求dy/dx y' = 2sin(cos(tan(x^2+1))) * cos(cos(tan(x^2+1))) * (-1) sin(tan(x^2+1)) * [sec(x^2+1)]^2 * 2x : 2.∫1/(x(lnx)^3/2))dx u = ln(x) I = ∫du/u^(3/2) = -2u^(-1/2) + C = -2[ln(x)]^(-1/2) + C : 3.∫(x-2)/(1+(x-1)^1/2)dx u = 1 + sqrt(x-1) I = ∫2(u-1)[(u-1)^2 - 1]/u du = ∫2[(u-1)^3 - (u-1)]/u du = 2 ∫(u^3 - 3u^2 + 2u)/u du = 2 {(1/3)u^3 - (3/2)u^2 + 2u} + C 剩下的就把u代回去 : 小第拜託幫忙了!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.220.159.5
zxcc79 : -2[ln(x)]^(-1/2) + C 可否化簡為ln(x)+c 07/26 10:26
zxcc79 : [sec(x^2+1)]^2 可否等於sec^2(x^2+1) 07/26 10:27