看板 Math 關於我們 聯絡資訊
※ 引述《Ohwil (LDPC)》之銘言: : -1 -1 -1 -1 : (A+B) + (A-B) = 2(A - B A B ) : 想問一下這個式子是怎麼推導的 : 跟Woodbury matrix identity 有關? : 出處 tao http://goo.gl/H8JMR In the following, ' means ^(-1), x meansε. det(A+B)det(A-B) =det(B)det(1+B'A)det(A)det(1-A'B) =det(B)det(A)det(1+B'A-A'B-1) =det(B)det(A)det(B'A-A'B) =det(B)det(AB'A-B) i.e. det(A+B)det(A-B)=det(B)det(AB'A-B) det(A+xH+B)det(A+xH-B)=det(B)det((A+xH)B'(A+xH)-B) Extracting the linear component of x tr((A+B)'H+(A-B)'H) =tr((AB'A-B)'(HB'A+AB'H)) =tr((B'A(AB'A-B)'+(AB'A-B)'AB')H) =tr(2(A-BA'B)H) Since H is arbitrary, we have (A+B)'+(A-B)'=2(A-BA'B) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.160.241.58
wohtp :先log兩邊會不會比較容易? 08/15 13:15
wohtp :用 log det = tr log 08/15 13:15