看板 Math 關於我們 聯絡資訊
※ 引述《jundarn (小眼)》之銘言: : 設f(x)=ax^2+bx+c (a不為0) : 若g(x)=-f(100-x) 且g(x)之圖形包含f(x)之頂點 : 其中f(x)及g(x)與x軸交點 x1<x2<x3<x4 且x3-x2=150 : 求x4-x1=? : 同事問的~聽說是競賽試題 嘗試從根與係數下手但很卡 求解~~謝謝 x_1, x_3 一組 x_2, x_4 一組 f(x) = a(x-x_1)(x-x_3) 頂點x_0 = (x_1 + x_3)/2 g(x) = -a(100-x-x_1)(100-x-x_3) = -a[x - (100 - x_1)][x - (100 - x_3)] 2頂點x_0' = 100 - (x_1 + x_2)/2 二拋物線對 (50,0) 點對稱 因為x_3 - x_2 = 150 x_3 + x_2 = 100 => x_3 = 125 x_2 = -25 g(x) = -a[x - (100 - x_1)][x + 25] = -a[x - x_4][x + 25] f(x) = a[x - x_1][x - 125] x_4 + x_1 = 100 x_0 = (x_1 + 125)/2 f(x_0) = -g(100 - x_0) a[125 - x_1]/2 * [x_1 - 125]/2 = a[75 - 3x_1]/2 * [175 + x_1]/2 => [x_1 - 125]^2 = 3[x_1 - 25][x_1 + 175] = 3[(x_1 - 125) + 100][(x_1 - 125) + 300] = 3[x_1 - 125]^2 + 1200[x_1 - 125] + 90000 => [x_1 - 125] = -300 +- 150√2 => x_1 = -175 - 150√2 取負因為要< x_2 = -25 因為x_4 + x_1 = 100 => x_4 = 275 + 150√2 x_4 - x_1 = 450 + 300√2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.220.147.143
Honor1984 :x_0' = 100 - (x_1 + x_3)/2 不過下面可不用到 08/19 13:33
jundarn :謝謝喔! 08/20 13:04