看板 Math 關於我們 聯絡資訊
(From Craig Hogg Mathematical statistics 6th, exercise 5.2.16) Question: Order statistics Y1 < Y2 of a random sample of size 2 from a continous type distribution with pdf f(x) such that f(x) > 0 for x≧0, f(x)=0, elsewhere. Show that if Z1=Y1, Z2=Y2-Y1 are independent, f(x) has a Gamma pdf with α=1, β>0(That is, a exponential distribution with mean β) 過程: Step 1: Find the joint pdf of Z1 and Z2 f(y1,y2) = 2f(y1)f(y2) , 0≦y1<y2<∞ Y1 = Z1, Y2 = Z1 + Z2 => ∂Y1/ ∂Z1 = ∂Y2/∂Z2 = ∂Y2/∂Z2=1, ∂Y1/∂Z2=0 => |J| = |1 0| = 1 |1 1| => g(z1,z2) = |J|f(z1,z1+z2) = 2f(z1)f(z1+z2), 0<z1<∞, 0 < z2 < ∞ Step 2: 因為Z1, Z2獨立, 所以 g(z1,z2) = g (z1) g (z2), 1 2 ∞ ∞ g (z1) = ∫ 2f(z1)f(z1+z2)dz2 = 2f(z1)∫ f(u)du = 2f(z1)[1-F(z1)] 1 0 z1 ∞ g (z2) = ∫ 2f(z1)f(z1+z2)dz1 = ? 2 0 g (z2) 好像沒有漂亮的形式 2 所以不知道題目的Hint: h(0)h(x+y)=h(x)h(y)有什麼用? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.164.119
rorbert7 :當joint pdf 可拆成f(x,y)=g(x)g(y) and 為積空間 09/09 12:36
rorbert7 :則 X獨立Y g(x) and g(y)不一定要是PDF 09/09 12:37
yueayase :但是拆出的2函數不一定能用f(x+y)的f表示? 09/09 15:17
雖然利用g1(z1)=2f(z1)[1-F(z1)]代回 g(z1,z2) = 2f(z1)f(z1+z2) 可得 f(z1+z2) = [1-F(z1)]g (z2) 2 乍看之下的確拆成2個只有單變數的函數. 但如果他的提示是對的, 應該要能夠進一步讓 [1-F(z1)] = c1 f(z1) 且 g (z2) = c2 f(z2) 2 但想不出任何方法可以推出這樣的結果 ※ 編輯: yueayase 來自: 111.251.165.155 (09/10 02:16)