看板 Math 關於我們 聯絡資訊
※ 引述《ericpoto (Eric)》之銘言: : 初學CRT遇到了理解方面得障礙 : 我只理解取819是因為7.9.13互質 : 而7x9x13=819,則在mod819下有解 : 接下來就完全不理解了 : 題目如下: : X≡5 (mod7) : X≡4 (mod9) : X≡3 (mod13) : 解如下: : r1=5,r2=4,r3=3 : n1=7,n2=9,n3=13 : n=n1n2n3=819 : N1=n/n1=117 : N2=n/n2=91 : N3=n/n3=63 : M1=N1¯(mod n1)=3 : M2=N2¯(mod n2)=1 : M3=N3¯(mod n3)=6 : 取X≡r1M1N1+r2M2N2+r3M3N3 (mod 819) : 我的問題是 : 1.為何要取N1=n/n1,是為了甚麼準備? : 2.M1不是在(mod n1)下的N1的inverse嗎?(類推M2.M3) : 為何可以代入(mod n1n2n3)的式子中? : 3.為何X≡r1M1N1+r2M2N2+r3M3N3 (mod 819) 我以前也想過這個問題, 然後利用以下結果可以觀察出Chinese Remainder Theorem 是如何被建構出來的: 首先, 先解出2個聯立的結果 Given the two simultaneous equations: x≡a1 (mod m1) x≡a2 (mod m2) and gcd(m1,m2)=1 Then, there is a (unique) solution and every solution has the form: x≡a1 m2 y1+a2 m1 y2 (mod m1 m2) , where m2 y1≡1(mod m1 ) and m1 y2≡1(mod m2 ) Proof: ∵x≡a1 (mod m1) => There is an integer u such that x=a1+u m1 x≡a2 (mod m2) => There is an integer v such that x=a2+v m2 => a1+u m1 = a2+v m2 => u m1 - v m2 = a2 - a1 --------(1) ∵gcd(m1,m2)=1 There exist integers s, t such that s m1 + t m2 = 1 ------- (2) To eliminate u and v in (1), we multiply (a2-a1) on the both sides of (2). => (a2-a1)s m1 + (a2-a1)t m2 = a2 - a1 Then we can take u = (a2-a1)s, v = -(a2-a1)t. => x = a1+u m1 = a1 + (a2-a1)s m1 = a1(1-s m1) + a2 s m1 By (2), x = a1 t m2 + a2 s m1 Then, x = a1 t m2 + a2 s m1 is a solution Note that t m2 ≡ 1 (mod m1) and s m1 ≡ 1 (mod m2) since the result of (2) and gcd(m1,m2)=1. Set t = y1 s = y2 andlLet x0 = a1 t m2 + a2 s m1. Since x0 is a solution, x ≡ x0 (mod m1), x ≡ x0 (mod m2) or m1 | x - x0 and m2 | x - x0 By gcd(m1, m2) = 1, m1 m2 | x - x0 => x ≡ x0 (mod m1 m2) ------------------------------------------------------------------ 再來要解出n個聯立的, 就一直任取兩個化簡: x≡a1 (mod m1) x≡a2 (mod m2) ... x≡a_n (mod m_n) gcd(m_i, m_j) = 1 for i≠j (1) 取 1 , 2式 可得 x ≡ a1 s1 m2 + a2 t1 m1 (mod m1 m2), m2 s1 ≡ 1(mod m1), m1 t1 ≡ 1(mod m2) (2) 取 新得到的結果和第3式 (因為gcd(m_i, m_j) = 1 => gcd(m1m2, m3) = 1, 所以直接套) => x ≡ (a1 s1 m2 + a2 t1 m1)s2 m3 + a3 t2 (m1 m2) ( mod (m1 m2) m3 ) ≡ a1 (s1s2) m2m3 + a2 (t1s2) m1m3 + a3 t2 m1m2 ( mod m1 m2 m3) 且 s2 m3 ≡ 1(mod m1 m2)(So, s2 m3 ≡ 1 (mod m1), s2 m3 ≡ 1 (mod m2)) t2 (m1 m2) ≡ 1 (mod m3) m2 s1 ≡ 1(mod m1), m1 t1 ≡ 1(mod m2) by (1) => (s1s2) m2m3 ≡ (s2 m3) (s1 m2) ≡ 1(mod m1) (t1s2) m1m3 ≡ (t1 m1) (s2 m3) ≡ 1(mod m2) t2 m1m2 ≡ 1 (mod m3) .... (n-1) 剩下 x ≡ a1 s1' M1 + a2 s2' M2 + ... + a_(n-1) s_(n-1)' M_(n-1) (mod m1m2...m_(n-1)) 和 x≡a_n (mod m_n) 其中 M_k = m1m2...m_(n-1)/m_k s_k' M_k ≡ 1 (mod m_k), k = 1, 2, ..., n-1 由之前的規律可得知 x ≡ a1 y1 M1 + a2 y2 M2 + ... + a_n y_n M_n (mod m1m2...m_n) M_k = m1m2...m_n/m_k M_k y_k ≡ 1( mod m_k ) k = 1, 2, ..., n 所以Chinese Remainder Theorem 可搭配解2聯立的方法和數學歸納法得出 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.165.155