看板 Math 關於我們 聯絡資訊
在A First Course in Abstract Algebra這本書裡的Chapter11, 講到了Finitely Generated Abelian Groups。 該節裡有個習題是, how many abelian groups, up to isomorphic, are of order 24? 25? 24*25? 藉由Finitely Generated Abelian Groups, there are 3 abelian groups of order 24 2 abelian groups of order 25, 然後因為24和25互質, 由定理Zn x Zm isomorphic to Znm if gcd(m,n)=1, there are 2*3=6 abelian groups of order 24*25. 不知道這樣的思路是不是正確的呢? 另外一個想釐清的問題是, 如果是16*18, 兩個不互質的數,就必須把16*18做質因數分解, 16*18=2^5*3^2, 用Finitely Generated Abelian Groups求解囉? 謝謝大家幫忙~~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 69.143.92.162
JASS0213 :對 09/21 08:33
star66 :Thx!! 09/21 11:24