作者znmkhxrw (QQ)
看板Math
標題Re: [分析] limit point有含lim sup嗎
時間Sun Oct 6 23:11:14 2013
※ 引述《ntme (one shot one kill)》之銘言:
: close 裡有所有的limit point
: 那lim sup /lim inf也在close裡嗎?
把數列看成集合時,因為集合對於相同的點是一樣的,所以要定義清楚
這問題可以整理成:
Let a:N → M be a sequence
where N is the set of natural number, M is a metric space
Define S = {a(n):n€N}
C = all cluster points of the sequence
= {p€M:∃subsequence of a_n converging to p}
L(S) = {q€M:∀ε>0, ∃x€S, x≠q s.t. d(x,q)<ε}
cl(S) = S∪L(S)
Then we have:
1. C⊆cl(S)
2. L(S)⊆C
3. from 1.2. we have C∪S = cl(S)
------------------------------------
而今天你的case是M=R,
可以定義limsup , liminf
加上下面這個定理:
<Theorem> a:N → R be a sequence
if a(n) is bounded
then (i) limsup, liminf are finite
(ii) limsup, liminf€C (也就是版友說的,找的到子列去趨近)
所以你問題的答案就是:limsup, liminf€C⊆cl(S)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.171.15.202
推 ntme :感謝,我想說closed in R1是measurable,所以存在open 10/06 23:29
→ ntme : G,s.t. G跟closed 區間任意靠近,所以想說會不會在 10/06 23:31
→ ntme :G\closed 裡面 10/06 23:32
→ ntme :但看到這篇定義就懂了 10/06 23:34