看板 Math 關於我們 聯絡資訊
※ 引述《ntme (one shot one kill)》之銘言: : close 裡有所有的limit point : 那lim sup /lim inf也在close裡嗎? 把數列看成集合時,因為集合對於相同的點是一樣的,所以要定義清楚 這問題可以整理成: Let a:N → M be a sequence where N is the set of natural number, M is a metric space Define S = {a(n):n€N} C = all cluster points of the sequence = {p€M:∃subsequence of a_n converging to p} L(S) = {q€M:∀ε>0, ∃x€S, x≠q s.t. d(x,q)<ε} cl(S) = S∪L(S) Then we have: 1. C⊆cl(S) 2. L(S)⊆C 3. from 1.2. we have C∪S = cl(S) ------------------------------------ 而今天你的case是M=R, 可以定義limsup , liminf 加上下面這個定理: <Theorem> a:N → R be a sequence if a(n) is bounded then (i) limsup, liminf are finite (ii) limsup, liminf€C (也就是版友說的,找的到子列去趨近) 所以你問題的答案就是:limsup, liminf€C⊆cl(S) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.171.15.202
ntme :感謝,我想說closed in R1是measurable,所以存在open 10/06 23:29
ntme : G,s.t. G跟closed 區間任意靠近,所以想說會不會在 10/06 23:31
ntme :G\closed 裡面 10/06 23:32
ntme :但看到這篇定義就懂了 10/06 23:34