看板 Math 關於我們 聯絡資訊
※ 引述《a2626 (Lucas)》之銘言: : http://miupix.cc/pm-4ND9PO : 有沒有神人能幫一下31題阿… : 怎麼算數字都超醜超難轉回來… : 答案相當簡單是 : http://miupix.cc/pm-AS1A0V : 但是就是弄不出來orz : 感謝了 先將 r(t) 表示出來 r(t) = [u(t) - u(t-2π)](3sint - cost) + u(t-2π)(3sin2t - cos2t) = u(t)(3sint - cost) - u(t-2π)[3sin(t-2π) - cos(t-2π)] + u(t-2π)[3sin2(t-2π) - cos2(t-2π)] 取 Laplace Transform 2 => s Y - s + sY - 1 - 2Y -0s 3 - s -2πs 3 - s -2πs 6 - s = e (---------) - e (---------) + e (---------) s^2 + 1 s^2 + 1 s^2 + 4 (s+2)(s-1)Y -0s 3 - s -2πs 3 - s -2πs 6 - s = s + 1 + e (---------) - e (---------) + e (---------) s^2 + 1 s^2 + 1 s^2 + 4 s + 1 -0s 3 - s => Y = ------------ + e [---------------------] (s+2)(s-1) (s+2)(s-1)(s^2 + 1) 3 2 3 2 -2πs -s - s + 6s + 6 + s + 4s - 3s - 12 + e [----------------------------------------] (s+2)(s-1)(s^2 + 1)(s^2 + 4) 2 1 1 1 -0s 1 1 1 1 1 = --- ----- + --- ----- + e (--- ----- - --- ----- - ---------) 3 s-1 3 s+2 3 s-1 3 s+2 s^2 + 1 -2πs 1 1 + e (--------- - ---------) (不得不說這數字配得神漂亮......) s^2 + 1 s^2 + 4 取 Inverse Laplace Transform 2 t 1 -2t 1 t -2t => y(t) = ---e + ---e + ---u(t)(e - e - 3sint) 3 3 3 1 + u(t-2π)[sin(t-2π) - ---sin2(t-2π)] 2 取 t ≧ 0 t 1 => y(t) = e - sint + u(t-2π)(sint - ---sin2t) 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.32.109.39
theye :推! 12/13 19:11
blackonefour:推推 12/13 19:56
a2626 :太感謝你了!!! 12/13 20:15
Heaviside :強ㄝ 12/13 21:36