看板 Math 關於我們 聯絡資訊
※ 引述《physmd (smd)》之銘言: : 我變分法是很多年前學的,而且只懂皮毛...... : 底下這個問題不好意思我用英文輸入啦 :P : 有請版友指點,多謝~~ : Consider real valued functions in the closed domain [0, 1] : Find f(x) that minimizes: Integrate{ g(x)^2 / f(x) }, : with respect to a given g(x), integrate over x from 0 to 1, : subject to the constraints : (1) f > 0 for all x in [0, 1] : (2) |f| = 1, that is, Integrate{ f(x) } over x = 0 to 1 is unity. : Suppose everything you need to know about g(x) is completely specified. : (the derivative or anti-derivative of g(x) etc) : In general g(x) can be just some real valued integrable function (that doesn't : even have to be piece-wise continuous), but if needed we can focus on the solution : f(x) for some smooth g(x). : p.s. : Some of you might notice that f is a probability density. : In fact, this question is simplified from a question regarding minimizing : the variance of some stuff. 是變分沒錯, 不要太要求嚴謹, 就像下面這樣做. Let f(x) be a function which satisfies (1), (2) and minimizes Int{ g(x)^2 / f(x) }. Let h(x) be any smooth function satisfying Int{ h(x) }=0. Then f(x)+εh(x) also satisfies (1) and (2) when ε is very close to zero. Therefore, the function I(ε) := Int{ g(x)^2 / (f(x)+εh(x)) } has a local maximum at ε=0, which implies I'(0)=0. By direct computation, we find this means Int{ [g(x)^2/f(x)^2].h(x) } = 0. Note that this is true for arbitrary smooth function h(x) satisfying Int{h(x)}=0. The remaining problem is to ask what f(x) makes this possible. By observation, we find it's true when g(x)^2/f(x)^2 is a constant. Hence f(x)=c|g(x)|, where c is the constant so that (2) holds. Precisely, c = 1/Int{|g(x)|}. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.243.114.220
wohtp :第五行,I的定義裡面,分母多了個平方 01/15 04:42
已修正, 謝謝.
wohtp :最後的答案是沒錯 01/15 04:43
yw1002 :是沒誠意還是小看?意思就是原本比較難,把簡化的 01/15 05:31
yw1002 :來問大家 以免大家不會 01/15 05:32
suhorng :原原PO應該是說把原本問題的其中一步抽取出來吧... 01/15 11:05
※ 編輯: llrabel 來自: 140.109.105.70 (01/15 15:16) ※ 編輯: llrabel 來自: 140.109.105.70 (01/15 15:17)
jacky7987 :... 01/15 22:39
physmd :喔多謝啦,我還想說要找什麼公式檢查條件來代一代 01/16 04:11
physmd :其實還是回歸基本定義最好了. 01/16 04:11
physmd :喔那個 p.s. 要講的是如果把我po的問題轉化成機率 01/16 04:13
physmd :問題來看的話其實是走回頭路....除非有另外的妙解. 01/16 04:14
physmd :Anyway, thanks guys. 01/16 04:14
JASS0213 :其實這個寫法已經非常嚴謹了。硬要多說一句就是最後 01/16 05:29
JASS0213 :一步,把h取成在兩個相異點附近rescale的那種appox. 01/16 05:31
JASS0213 :dirac family。然後你就可以證明f=c|g| a.e 01/16 05:33
willydp :小問題: 1.最大化的f存在 2.g在一些地方=0怎麼辦? 01/16 08:29
willydp : 小 01/16 08:30
willydp :根據內文的論證, 頂多只能說f是個critical pt而已 01/16 08:32
willydp :我想“不嚴謹”這幾個字是這個意思吧? 嚴謹的變分法 01/16 08:37
willydp :還需要多一點的分析. 原本的作法已能讓很多人信服了. 01/16 08:39
JASS0213 :我覺得各位把問題搞複雜了 01/16 19:42
JASS0213 :這只是柯西不等式罷了 01/16 19:42
sneak : 第五行,I的定義裡面, https://noxiv.com 01/02 15:39
muxiv : 是沒誠意還是小看?意思 https://moxox.com 07/07 11:48