看板 Math 關於我們 聯絡資訊
※ 引述《chopriabin ()》之銘言: : Suppose that : 1. f(x) is a continuous nonnegative function for x in R with the property : that f(x) is non-increasing in x and \int_{0}^{\infty} f(x) dx<\infinity. non-increasing 這裡應該滿重要的,你可以由這一點和 f≧0 屬於 L^1導出 lim f(x) = 0。不然你的結論可能不成立... x→∞ : 2. {x_n} is a nonnegative sequence with x_n converging to x_0 when n tends : to infinity. Must f(x_n) approach to f(x_0) as x_n tends to infinity ? : Prove or disprove. 所以是要證明 lim f(x_n) = lim f(x) for every real sequence {x_n} with n→∞ x→∞ limit = +∞ 的意思? 那這樣是有的,從 lim f(x) = 0 就可看出 x→∞ 有錯請指教 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.46.206.146