看板 Math 關於我們 聯絡資訊
※ 引述《amy29585028 (阿金大人)》之銘言: : http://ppt.cc/bkHg : 高中學生拿來問的問題,應該是學校老師出的思考題, : 想了一下不知道如何下手,懇請高手指點。 8bc 8ca 8ab Let --- = a', --- = b', --- = c' a^2 b^2 c^2 If exist such a,b,c that 1 1 1 ------- + ------- + ------- ≧ 2 √(1+a') √(1+b') √(1+c') 1 1 1 Soppuse ------- = x, ------- = y, ------- = z, √(1+a') √(1+b') √(1+c') we have that x+y+z≧2, x,y,z<1. Consider the triangle with side lengths x,y,z, the area of which D, the radius of the circumcircle of which R, 16D^2 we have xyz=4RD and (x+y-z)(x-y+z)(-x+y+z) = ------- (x+y+z) Now we have (1-x^2)(1-y^2)(1-z^2) (2+2x)(2+2y)(2+2z)(2-2x)(2-2y)(2-2z) --------------------- = ------------------------------------ x^2y^2z^2 64x^2y^2z^2 (3x+y+z)(x+3y+z)(x+y+3z)(x+y-z)(x-y+z)(-x+y+z) ≦ ---------------------------------------------- 64x^2y^2z^2 (3x+y+z)(x+3y+z)(x+y+3z) = ------------------------ 64(x+y+z)R^2 125(x+y+z)^2 ≦ ------------------------ 1296R^2 (We have (x+y+z)^2≦27R^2 so) 125 ≦ ------------------------ 8 (1-x^2)(1-y^2)(1-z^2) But --------------------- = a'b'c' = 512 x^2y^2z^2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.162.196.8