看板 Math 關於我們 聯絡資訊
※ 引述《stman (小強)》之銘言: : sin(πx) : 1.If f(x)=exp(g(x)), where g(x)=∫ √(1+t^2)dt. find f'(1) : 0 f'(x) = (exp(g(x)))*(g'(x)) g'(x) = (√(1 + (sinπx)^2))*(πcos(πx)) g'(1) = (√(1 + (sinπ)^2))*(πcosπ) = (√(1 + 0^2))*(π)*(-1) = -π sinπ g(1) = ∫ √(1 + t^2) dt 0 0 = ∫ √(1 + t^2) dt = 0 0 f'(1) = (exp(g(1))*(g'(1)) = (exp(0))*(-π) = -π : 2.The base of a solid is the ellipse x^2+4y^2=4, and every parallel cross : sections perpendicular to the x-axis are equilateral triangles. Find the : volume of the solid? : 3.Let S be the surface of the solid E thar lies above the cone z=√(x^2+y^2) : and below the sphere x^2+y^2+z^2=z and F(x,y,z)=(z,y,sin(x+y)). Evaluate : ∫∫ F‧dS =? : S : 4.Use the formula x^x=e^(xlnx) and the Maclaurin series for e^x to derive : the formula 1 x ∞ n-1 n : ∫ x dx= Σ((-1) )/(n ) : 0 0 : 5.Let f(x,y)=8xy-2x-4y+5. Find the absolute minimum value of the function : f(x,y) in the set D, where D is the region bounded by the parabola y=x^2 : and the line y=4. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.250.171.187