→ xcycl :In 是什麼?union 是怎麼定義的?用的是 ZF 集合論嗎 03/16 18:07
想請問一題有限集的證明,
Prove: If A and B are finite sets, then AUB is finite set.
已知的公設為 Axiom of Induction
還有已知的定理為
1.Recursion Theorem: If G:A→A and a屬於A,則存在唯一 F:N(自然數)→A
such that F(1)=a and F(S(n))=G(F(n)) for all 自然數n
2.There exists no 1-1 mapping of any initial segment In onto a proper
subset of In.
3.A set X is finite if it is empty of if there is a 1-1 mapping of some
initail segment In onto X.
4.If X is a finite set, then there exists no 1-1 mapping of X onto a proper
subset Y of X.
這題是放在定理4後,所以我猜應該要從3&4下手,
可是不知道怎麼下手....
只知道存在 F:In→A and G:In→B 是 1-1 and onto
然後我應該假設一個 H:AUB→proper set of AUB 是 1-1&onto,
並想辦法證明他是不可能的??
好囧,一整個不知道要怎麼設定....
先謝謝幫忙解的人ˊˋ
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 36.227.227.11