作者tim8238818 (AAAAAAAAAAAAAAAAAAAAAAA)
看板Math
標題[線代] 一題證明
時間Tue Mar 18 11:43:59 2014
Let A, B and C be n x n matrices. We say that A is similar to B if there is
an n x n non-singular matrix P, such that(P-1)AP = B. Prove each of the
following statements. (P-1是P的inverse)
a. If A is similar to B, then B is similar to A.
b. If A is similar to B and B is similar to C, then A is similar to C
第一小題我寫
A=B
A=(p-1)AP
PA=AP substitute to (P-1)AP=B
(P-1)(PA)=B
A=B
第二小題
A=B and B=C=(P-1)AP
A=(P-1)AP
PA=AP substitute to (P-1)AP=C
thus (P-1)PA=C
A=C
不知道這樣對不對,先謝謝板上神人賜教
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 173.198.43.204
→ egg12388 :錯,為什麼一開始就有"A=B"?? 03/18 13:56
→ egg12388 :順帶一提,P的反矩陣可以打成 "P^{-1}" "^"是次方 03/18 13:58
→ egg12388 :定義"similar"有它的意義,並不能保證得到 "equal" 03/18 14:03
→ tim8238818 :謝謝樓上指正所以我的起手式要怎麼寫啊@@ 03/18 14:26
→ jimmy86204 :因為A和B相似......... 03/18 15:07
→ egg12388 :所以P^{-1}AP = B for some invertible matrix P. 03/18 18:01
→ egg12388 :你只要想辦法找到另一個可逆矩陣Q滿足Q^{-1}BQ=A就好 03/18 18:04