看板 Math 關於我們 聯絡資訊
Let A, B and C be n x n matrices. We say that A is similar to B if there is an n x n non-singular matrix P, such that(P-1)AP = B. Prove each of the following statements. (P-1是P的inverse) a. If A is similar to B, then B is similar to A. b. If A is similar to B and B is similar to C, then A is similar to C 第一小題我寫 A=B A=(p-1)AP PA=AP substitute to (P-1)AP=B (P-1)(PA)=B A=B 第二小題 A=B and B=C=(P-1)AP A=(P-1)AP PA=AP substitute to (P-1)AP=C thus (P-1)PA=C A=C 不知道這樣對不對,先謝謝板上神人賜教 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 173.198.43.204
egg12388 :錯,為什麼一開始就有"A=B"?? 03/18 13:56
egg12388 :順帶一提,P的反矩陣可以打成 "P^{-1}" "^"是次方 03/18 13:58
egg12388 :定義"similar"有它的意義,並不能保證得到 "equal" 03/18 14:03
tim8238818 :謝謝樓上指正所以我的起手式要怎麼寫啊@@ 03/18 14:26
jimmy86204 :因為A和B相似......... 03/18 15:07
egg12388 :所以P^{-1}AP = B for some invertible matrix P. 03/18 18:01
egg12388 :你只要想辦法找到另一個可逆矩陣Q滿足Q^{-1}BQ=A就好 03/18 18:04