推 tml :坐標法:令B(0,0),A(k,0),C(0,2k),P(2cosθ,2sinθ) 06/11 07:11
→ tml :用k來湊出三角恆等式,答案有點醜... 06/11 07:12
→ mack :這是國中資優題 請麻煩用國中生可以理解的解法 謝 06/11 08:15
→ ckchi :國中一樣可以座標化啊... 06/11 10:53
→ ckchi :設A(0,0) B(k,0) C(k,2k) D(0,2k) P(x,y) , x,y,k>0 06/11 10:53
→ ckchi :(1):PA = 1 => x^2 + y^2 = 1 06/11 10:53
→ ckchi :(2):PB = 2 => (x-k)^2 + y^2 = 4 06/11 10:54
→ ckchi :(3):PC = 3 => (x-k)^2 + (y-2k)^2 = 9 06/11 10:54
→ ckchi :(2)-(1): -2kx + k^2 = 3 => x = (k^2-3)/2k 06/11 10:54
→ ckchi :(3)-(2): -4ky + 4k^2 = 8 => y = (k^2-2)/k 06/11 10:54
→ ckchi :兩式代回(1)可解k,再式回來可解x,y 06/11 10:54
→ ckchi :ps.在解k時可以把k^2叫做t,會變成2次式, 06/11 10:56
→ ckchi :不過數字真的有點醜...... 06/11 10:59
→ ckchi :另外,若不座標化的做法是: 06/11 12:47
→ ckchi :作P在AB線段的垂足M、P在BC線段的垂足N 06/11 12:47
→ ckchi :設:AB=k,AD=2k,PM=m,PN=n 06/11 12:47
→ ckchi :(1):PA = 1 => m^2 + (k-n)^2 = 1 06/11 12:47
→ ckchi :(2):PB = 2 => m^2 + n^2 = 4 06/11 12:48
→ ckchi :(3):PC = 3 => (2k-m)^2 + n^2 = 9 06/11 12:48
→ ckchi :式子和座標化一樣,解法也一樣 06/11 12:48
→ ckchi :應該說式子很像,解法一樣 06/11 12:48
→ poyu2303 :將ΔAPB對B點旋轉-90度,再對B點放大2倍得ΔCEB 06/11 13:20
→ poyu2303 :ΔAPB~ΔCEB,且∠PBE=90度,然後座標化 06/11 13:21
→ poyu2303 :取B(0,0)、P(0,2)、E(4,0),設C(x,y) 06/11 13:23
→ poyu2303 :PC=3得x^2+(y-2)^2=9 06/11 13:25
→ poyu2303 :CE=2得(x-4)^2+y^2=4 06/11 13:26
→ poyu2303 :長邊BC=2a得x^2+y^2=4a^2,所求為2a^2 06/11 13:27
→ poyu2303 :這組方程組比較好解面積為4+(√95)/5 06/11 13:30