看板 Math 關於我們 聯絡資訊
※ 引述《adu (^_^)》之銘言: : 1.Consider the system in polar coordinates : r' = (r-r^3)/2 : theta' = 1 : Show that on the unit disk D = {r < 1} is conjugate to the linearised ^^^^ ...主詞是什麼? : system at the origin with domain R^2. x' = [(r - r^3)/2]cosθ - rsinθ = x - y - (x^2 + y^2)x/2 y' = [(r - r^3)/2]sinθ + rcosθ = y + x - (x^2 + y^2)y/2 (x_0, y_0) = 0 linearize x' = (1 - (3/2)(x_0)^2)x + (-1 - (y_0)(x_0))y y' = (1 - x_0y_0)x + (1 - (3/2)(y_0)^2)y x' = x - y y' = x + y 不知道是不是再問這個? 這個方程式是可以直接解的 r = r(θ) dr/dθ = (r - r^3)/2 => r/√(1 - r^2) = Cexp(θ/2) θ = t + θ_0 : 2.Show that: : x' = x+y^2 : y' = -y : and : x'=x : y'=-y+4x^3 : are Hamiltonian. 你問問題前應該先定義說明Hamiltonian的意思 有很多名詞是用Hamiltonian當名稱 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 220.136.59.218 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1403774585.A.2DF.html
adu :謝謝幫忙:) 06/28 03:54