→ adu :謝謝:) 06/28 03:54
※ 引述《adu (^_^)》之銘言:
: 1.Consider the system in polar coordinates
: r' = (r-r^3)/2
: theta' = 1
: Show that on the unit disk D = {r < 1} is conjugate to the linearised
: system at the origin with domain R^2.
: 2.Show that:
: x' = x+y^2
: y' = -y
取 H(x,y)= x*y+ (y^3)/3 +c
如此一來 x'= dH/dy, y'= -dH/dx 這裡 "d" 是偏微分的意思
依照下面網頁上equation (2) 的定義, 這是一個Hamiltonian system
http://www.scholarpedia.org/article/Hamiltonian_systems
: and
: x'=x
: y'=-y+4x^3
: are Hamiltonian.
取 H(x,y)=..
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 24.4.98.254
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1403803975.A.FF2.html