看板 Math 關於我們 聯絡資訊
※ 引述《adu (^_^)》之銘言: : 1.Consider the system in polar coordinates : r' = (r-r^3)/2 : theta' = 1 : Show that on the unit disk D = {r < 1} is conjugate to the linearised : system at the origin with domain R^2. : 2.Show that: : x' = x+y^2 : y' = -y 取 H(x,y)= x*y+ (y^3)/3 +c 如此一來 x'= dH/dy, y'= -dH/dx 這裡 "d" 是偏微分的意思 依照下面網頁上equation (2) 的定義, 這是一個Hamiltonian system http://www.scholarpedia.org/article/Hamiltonian_systems : and : x'=x : y'=-y+4x^3 : are Hamiltonian. 取 H(x,y)=.. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 24.4.98.254 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1403803975.A.FF2.html
adu :謝謝:) 06/28 03:54