看板 Math 關於我們 聯絡資訊
※ 引述《qwerty147852 (天橋下說書人)》之銘言: : 想請問各位前輩 : 3.4題要如何導出 : http://imgur.com/oFpMIxT : 感謝 (c) check n = 0 is true assume n = k, 1+x+x^2+ ... + x^k = [x^(k+1)-1]/(x-1) is true n = k+1, 1+x+x^2+ ... + x^k + x^(k+1) = [x^(k+1)-1]/(x-1) + x^(k+1) = [x^(k+1)-1]/(x-1) + x^(k+1)(x-1)/(x-1) = [x^(k+1)-1]/(x-1) + [x^(k+2)-x^(k+1)]/(x-1) = [x^(k+2)-1]/(x-1) is true so by induction, ....... (d) check n = 1 is true assume n = k, 1*1+2*2+3*2^2+...+k*2(k-1) = (k-1)2^k + 1 is true n = k+1, 1*1+2*2+3*2^2+...+k*2(k-1)+(k+1)*2^k =(k-1)2^k + 1 + (k+1)*2^k =k*2^k - 2^k + 1 + k*2^k + 2^k = 2k*2^k = k*2(k+1) so by induction, ....... 應該降吧 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 203.68.75.117 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1413797847.A.5DF.html