來一個高中生作得出來的方法,只要不計算錯誤:
(Ⅰ) 令 A(0,a), B(-(√3)a,0), D((√3)a,0). (即菱形中心點為(0,0))
並假設 P(x,y). 所求即為 (2√3)a^2.
已知 BP=3, DP=2, AP=1.
(Ⅱ) 解 x. 令 P'(x,0) 為 P在x軸上的投影點.
BP^2 - BP'^2 = DP^2 -DP'^2.
=> 9 - (x + (√3)a)^2 = 4 - ((√3)a -x)^2.
=> x = 5/[(4√3)a].
(Ⅲ) 解 y.
y = (DP^2 -DP'^2) ^(1/2)
= [4 - ((√3)a-x)^2] ^(1/2)
= [4 - (3a^2 -2(√3)ax +x^2] ^(1/2)
= [4 - (3a^2 -5/2 +25/(48a^2)] ^(1/2)
= [-3a^2 -25/(48a^2) +13/2] ^(1/2).
(Ⅳ) 解 a^2.
AP^2 = 1.
=> 25/(48a^2) + {a - [-3a^2 -25/(48a^2) +13/2] ^(1/2) }^2 = 1.
=> 25/(48a^2)
+ a^2 -2a[-3a^2-25/(48a^2)+13/2]^(1/2) +[-3a^2-25/(48a^2)+13/2] =1.
=> -2a^2 -2a[-3a^2-25/(48a^2)+13/2]^(1/2) = -11/2.
=> 4a^2 (-3a^2 -25/(48a^2) +13/2) = 4a^4 -22a^2 +121/4.
=> 16a^4 -48a^2 + 97/3 =0.
=> 48a^4 -144a^2 +97 =0
=> 公式解得 a^2 = [6(√3) ±(√11)] / [4(√3)].
所求 = 2(√3)a^2 = [6(√3) ±(√11)]/2.
又 AB + AD > PB + PD, 即 4a > 5.
估計近似值後取 2(√3)a^2 = [6(√3)+(√11)]/2.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.122.140.144
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1414397586.A.530.html
※ 編輯: LeonYo (114.42.233.87), 10/27/2014 22:30:05