→ kerwinhui : any condition on A? E.g., false for A=R. 11/01 07:45
→ GSXSP : Can you give me an example for A=R, thanks. 11/01 08:12
→ r19891011 : Int_{y \in R}exp(-ixy) dy=2 $pi $delta(x) 11/02 02:12
Add a constraint f(x,y) \in R, real function
→ willydp : f(x,y)=(x/√π)exp(-y^2/x^2) 11/02 07:10
→ willydp : x∈[-1, 1], y∈R 11/02 07:12
int_{y\in R} (x/√π)exp(-y^2/x^2) dy
= x^2 is continuous
did I miss something?
※ 編輯: GSXSP (132.239.223.126), 11/06/2014 02:00:51
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 132.239.223.126
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1415239895.A.1B5.html
→ kerwinhui : f(x,y)=x for all (x,y); then int f(x,y) dy does 11/06 23:12
→ kerwinhui : not give a finite result for x!= 0, and 0 at x=0 11/06 23:13
→ kerwinhui : you can introduce a cut-off function in y to get 11/06 23:13
→ kerwinhui : e.g. f(x,y)=x eta(xy), eta = a bump function 11/06 23:17
→ njru81l : f(x,y)=x eta(xy) is an unbounded functon. 11/07 00:00
→ njru81l : If c satisfies eta(c)=/=0,then f(x,c/x)=x eta(c) 11/07 00:02
→ njru81l : |f(x,c/x)|→∞ as x→∞ 11/07 00:03
→ kerwinhui : No, eta is a bump function, i.e., eta supported 11/09 13:05
→ kerwinhui : on [-1-epsilon, 1+epsilon] and eta(x)=1 for all 11/09 13:06
→ kerwinhui : x in [-1,1] 11/09 13:06