看板 Math 關於我們 聯絡資訊
※ 引述《GSXSP (Gloria)》之銘言: Prove or disprove that If f(x,y) bounded and continuous in (x,y), then Int_{y \in A } f(x,y) dy is continuous in x. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 166.170.48.149 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1414787482.A.40C.html
kerwinhui : any condition on A? E.g., false for A=R. 11/01 07:45
GSXSP : Can you give me an example for A=R, thanks. 11/01 08:12
r19891011 : Int_{y \in R}exp(-ixy) dy=2 $pi $delta(x) 11/02 02:12
Add a constraint f(x,y) \in R, real function
willydp : f(x,y)=(x/√π)exp(-y^2/x^2) 11/02 07:10
willydp : x∈[-1, 1], y∈R 11/02 07:12
int_{y\in R} (x/√π)exp(-y^2/x^2) dy = x^2 is continuous did I miss something? ※ 編輯: GSXSP (132.239.223.126), 11/06/2014 02:00:51 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 132.239.223.126 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1415239895.A.1B5.html
kerwinhui : f(x,y)=x for all (x,y); then int f(x,y) dy does 11/06 23:12
kerwinhui : not give a finite result for x!= 0, and 0 at x=0 11/06 23:13
kerwinhui : you can introduce a cut-off function in y to get 11/06 23:13
kerwinhui : e.g. f(x,y)=x eta(xy), eta = a bump function 11/06 23:17
njru81l : f(x,y)=x eta(xy) is an unbounded functon. 11/07 00:00
njru81l : If c satisfies eta(c)=/=0,then f(x,c/x)=x eta(c) 11/07 00:02
njru81l : |f(x,c/x)|→∞ as x→∞ 11/07 00:03
kerwinhui : No, eta is a bump function, i.e., eta supported 11/09 13:05
kerwinhui : on [-1-epsilon, 1+epsilon] and eta(x)=1 for all 11/09 13:06
kerwinhui : x in [-1,1] 11/09 13:06