看板 Math 關於我們 聯絡資訊
※ 引述《xu3g4m4 (Lsy)》之銘言: : Let w in C^n be a column n-vector. : Let A=ww* : 如何證明 : 1. w*w is an eigenvalue of A with eigenvector w. Aw = ww*w = (w*w)w => w*w is an eigenvalue of A with eigenvector w : 2. 0 is an eigenvalue of A and that any vector in the orthogonal complement of : span(w) is an associated eigenvector. For any vector v such that v*w = 0, w*v = 0 and Av = ww*v = 0w = 0v => 0 is an eigenvalue of A and that any vector in the orthogonal complement of span(w) is an associated eigenvector. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.44.195.196 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1417965843.A.99D.html
xu3g4m4 : 謝謝 12/11 00:50