看板 Math 關於我們 聯絡資訊
※ 引述《xy210742 (Sam)》之銘言: : (y')^2=9*(x^4)*y : 請問這題應如何假設變數 : 才能使此題變成線性微分方程 : 謝謝 let z = y' = (D_x) y => y = z^2 / (9x^4) D_x ===> z = [ 2zz'/(9x^4) ] + [ -4z^2/(9x^5) ] => z * [ z' - 2z/x - 9x^4/2 ] = 0 =================================================== <a> 通解 z' - 2z/x = 9x^4/2 => z = 3x^5/2 + cx^2 => y = z^2 / (9x^4) = x^6/4 + cx^3/3 + c^2/9 =================================================== <b> 異解 z=0 => y = 0^2 / (9x^4) =0 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.169.173.126 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1420437053.A.DF2.html
BLUEBL00D : 通解可再化簡為 y = x^6/4 + cx^3 + c^2 01/05 13:58