看板 Math 關於我們 聯絡資訊
※ 引述《Stoudemi (Stoudemi)》之銘言: : 請教版上的高手 : 這一題應該如何解會比較簡單 : 小弟一開始是利用R和r的關係來解 : http://i.imgur.com/IwBw2hz.jpg 2R + r + r + rsqrt(2) + rsqrt(2) = 2sqrt(2) => R + [1 + sqrt(2)]r = sqrt(2) => R = sqrt(2) - [1 + sqrt(2)]r 因為4r <= 2 =>r <= 1/2 => R >= sqrt(2) - [1 + sqrt(2)]/2 = [sqrt(2) - 1]/2 (2)對 又2R <= 2 => R <= 1 (1)對 r = [sqrt(2) - R]/[1 + sqrt(2)] >= [sqrt(2) - 1]/[1 + sqrt(2)] = 3 - 2sqrt(2) [sqrt(2) - 1]/2 <= R <= 1 3 - 2sqrt(2) <= r <= 1/2 A = Pi 4 r^2 + Pi R^2 = Pi[4r^2 + R^2] = Pi{4r^2 + 2 - 2sqrt(2)[1 + sqrt(2)]r + [3 + 2sqrt(2)]r^2} = Pi{[7 + 2sqrt(2)]r^2 - 2sqrt(2)[1 + sqrt(2)]r + 2} 當r = sqrt(2)[1 + sqrt(2)] / [7 + 2sqrt(2)] = [2 + sqrt(2)] / [7 + 2sqrt(2)] A有極小值 (4)錯 當r = 3 - 2sqrt(2)時 A有極大值 此時R = sqrt(2) - [sqrt(2) + 1][3 - 2sqrt(2)] = 1 (3)對 (5)錯 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.56.9.109 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1472013974.A.EA4.html