→ LiamIssac : independence? 07/12 13:04
本提問結束了。你好,請問哪邊有問題嗎?
※ 編輯: cyt147 (140.122.140.36), 07/12/2017 13:38:40
大家早安!有個證明想請教各位,謝謝。
下面是C.-H.定理:
Let T be a linear operator on a finite-dimensional vector space V over F and
let f(t) be the characteristic polynomial of T. Then f(T)=T_0, the zero
operator.
Now I want to prove its corollary for matrices. That is, I want to prove the
following theorem by using the C.-H. Theorem:
Let A be an nxn matrix and let f(t) be the characteristic polynomial of A.
Then f(A)=O, the zero matrix.
proof: Since the characteristic polynomial of L_A(the left-multiplication
transformation for A) is f(t), by the C.-H. Theorem, f(L_A)=T_0.
..............To be continued.
雖然不太確定,但 L_{f(A)}=f(L_A)應該是正確的,接下來的問題就是證:
若y為任意nx1矩陣,且f(A)y=O_{nx1},則f(A)=O
請問各位,我該如何解決這個問題呢?感謝!
===================提問結束,補證明如下============================
首先,請複習Friedberg第2章,這邊有提到左乘變換的一些性質,用這些性質
,我們可以輕易證得L_{f(A)}=f(L_A),既然f(L_A)為零變換,我們可以導出
L_{f(A)}=L_{O},接下來請看Theorem 2.15.(b),結論:f(A)=O
※ 編輯: cyt147 (140.122.140.36), 07/12/2017 12:53:54