看板 Math 關於我們 聯絡資訊
大家早安!有個證明想請教各位,謝謝。 下面是C.-H.定理: Let T be a linear operator on a finite-dimensional vector space V over F and let f(t) be the characteristic polynomial of T. Then f(T)=T_0, the zero operator. Now I want to prove its corollary for matrices. That is, I want to prove the following theorem by using the C.-H. Theorem: Let A be an nxn matrix and let f(t) be the characteristic polynomial of A. Then f(A)=O, the zero matrix. proof: Since the characteristic polynomial of L_A(the left-multiplication transformation for A) is f(t), by the C.-H. Theorem, f(L_A)=T_0. ..............To be continued. 雖然不太確定,但 L_{f(A)}=f(L_A)應該是正確的,接下來的問題就是證: 若y為任意nx1矩陣,且f(A)y=O_{nx1},則f(A)=O 請問各位,我該如何解決這個問題呢?感謝! ===================提問結束,補證明如下============================ 首先,請複習Friedberg第2章,這邊有提到左乘變換的一些性質,用這些性質 ,我們可以輕易證得L_{f(A)}=f(L_A),既然f(L_A)為零變換,我們可以導出 L_{f(A)}=L_{O},接下來請看Theorem 2.15.(b),結論:f(A)=O ※ 編輯: cyt147 (140.122.140.36), 07/12/2017 12:53:54
LiamIssac : independence? 07/12 13:04
本提問結束了。你好,請問哪邊有問題嗎? ※ 編輯: cyt147 (140.122.140.36), 07/12/2017 13:38:40