作者jacky7987 (憶)
看板NCCU08_Math
標題[功課] 如果你沒時間看Bernstein
時間Tue Jan 11 01:09:33 2011
幫大家簡單整理一下
n r n r n-r
1.B_n(f:x)=sum f(---)( )x (1-x)
r=0 n r
n r n-r
Sometimes we write p (x)=( )x (1-x)
r,n r
2.B_n is a
linear operator from F([0,1]) to F([0,1])
翻譯成中文就是把一個定義在[0,1]的函數f 打到 B_n(f)這樣
而且他是線性的i.e.
For a in |R
B_n(f+a*g:x)=B_n(f:x)+a*B_(g:x)
3.B_n is a
monotone(positve) operator i.e.
If f(x)≧g(x) in [0,1] => B_n(f:x)≧B_n(g:x) in [0,1]
(保持大小的關係)
In par, f(x)≧0 => B_n(f:x)≧0
4.(1)The Berstein Polynomial only reproduce linear polynomial i.e.
B_n(ax+b:x)=ax+b 就是線性的轉出來會長的一樣
2 2 1
e.g. B_n(x :x )=x +---x(1-x) 沒有出來還是長得一樣
n
(2)
B_n(f:0)=f(0)
B_n(f:1)=f(1)
hence Bernstein Polynomial interpolate f at both end of f on [0,1]
5.Defn: The
Forward difference operator △ with step size h is defined by
 ̄ ̄
△f(x_0)=f(x_0+h)-f(x_0)
Under this notation ,the Bernstein Polynomial may be expressed in the form
n n r r
B_n(f:x)=sum ( )△ f(0)x 1
r=0 r with step size h=---
n
反正就是它可以展成差分的模樣
6.The relation between difference and derivative is
m
△f(x_0) (m)
--------- = f (c) for some c in (x_0,x_0+mh)
m
h
差分透過補上寬度就可以用均值定理一直簡化到某個c在你差分的範圍裏面
7.Differential form for Bernstein Polynomial
(k) (n+k)! n k r n r n-r
B (f:x)=-------sum △f(-----)( )x (1-x) 1
n+k n! r=0 n+k r with step size h=-----
n+k
反正degree of n+k微分k次就會變成degree of n只是差分距離要用n+k次的而已
8.Suppose f \in C[0,1] ,then for any ε>0 there exists a N\in |N s.t
forall n≧N |f(x)-B_n(f:x)|<ε
請記住f一定要
定義在[0,1]上而且要
連續這個定理才會對
=====
看到一個機掰的定理不在這個範圍但是很有趣
Voronovskaya’s theorem
1
lim n(f(x)-B_n(f:x))=---x(1-x)f''(x)
n->∞ 2
=====
祝大家期末考順利
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.93.138
※ 編輯: jacky7987 來自: 123.193.93.138 (01/11 01:13)
推 Madroach:推 01/11 01:14
→ jacky7987:希望大家可以認真看看也許只考一兩題但是就是10分 01/11 01:17
推 dbtuh611:推 01/11 02:51