作者jacky7987 (憶)
看板NCCU08_Math
標題[功課] 代數習題
時間Thu Mar 24 23:20:41 2011
下面說明不是我太過高傲或是什麼只是害怕有心人士會這樣
先聲明我們提供的習題解答可能都有錯
寫解答是基於大家可以有所參考的答案
歡迎告訴我們有哪裡錯我們會盡量更正
所以不要背了之後寫考卷錯了來怪我們
我們也不知道應該要生氣還是抱歉才是
希望大家可以順利的通過各代數大小考
謝謝大家
=====
以下是勘誤XD
3.72
請忽略紙上的答案
以下也許才是正確的
inf i
Let I be any ideal in K[[x]]={f(x)=\sum a_i*x | a_i\in K}
i=0
By Well-Ordering Principle ,let n={ord(f)|f\in I}, and defined ord(f(x))=N
(The defn of ord, just see exercise 3.40)
Claim: I=(f(x)) n
First, by exercise 3.40,f(x)=x *u_1,where u_1 is an unit.
Given g(x)\in I
Clearly, ord(g(x))≧ord(f(x))
m
Hence, g(x)=x *u_2, m≧n
m n m-n
Hence,g(x)=x *u_2=x *x *u_2
n -1 m-n
=(x *u_1)*u_1 *x u_2
-1 m-n
=f(x)*(u_1 *x *u_2)\in (f(x))
then we are done.
====
3.77
Suppose that \pi,\beta are not relative prime i.e. gcd(\pi,\beta)=d≠1
在這後面加上以下這段
The reason why we can just simplify d≠"1" because
In general,if u is an unit and u=gcd(x,y)
then (u)=R=(1) since u^(-1)*u=1\in (u),and R is PID
Hence,we just simplify it
我解釋一下這段
因為在一般的domain裡面
gcd不是唯一的!
(在Z裡面特地調成正的,在polynimail裡面特地用monic的那個)
但是在PID裡面因為兩個gcd只差一個
unit(上面:u跟1只差u^(-1))
所以
By Prop.3.41這兩個生成的
ideal會一樣,所以我們把他都當成一樣的
再繼續下面那幾行
====
3.37的完整證明
(<=)
By division algorithm
2
f(x)=(x-a) *q(x) + cx+d, for some q(x)\in R[x]
2
then f'(x)=2(x-a)q(x)+(x-a) *q'(x)+c
Because (x-a)|f' =>f'(a)=0 => c=0
2
=>f(x)=(x-a) *q(x)+d
By assumption (x-a)|f => f(a)=0 => d=0
2
therefore d=0 => (x-a) 整除f(x)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.194.201.206
※ 編輯: jacky7987 來自: 123.194.201.206 (03/24 23:29)
推 dbtuh611:推薦這篇文章 03/24 23:42
→ YLiLi:M到明年好了 03/25 00:21
→ jacky7987:我猜明年會換課本 03/25 00:25
※ 編輯: jacky7987 來自: 123.194.201.206 (03/25 00:51)
推 firzen007:看完有種在改程式碼的感覺...但真的能發現錯誤的人其實 03/25 00:48
→ firzen007:本身應該也念的不錯了XD 03/25 00:48
推 zoliasm:感謝老居 03/25 01:28
推 ps9638527410: 03/28 12:42
推 stymyle:大推特推 04/08 00:50