看板 NCTU-STAT95G 關於我們 聯絡資訊
學長我想問一下 就是之前學長在介紹盧sir的最後 有告訴我們可以讓R跑很快的指令 哈哈 我突然忘記了 不過我想把他學起來 學長在教導一下^^ 哈哈 ※ 引述《seablack (Water)》之銘言: : Add some useful packages (functions) in R to all. : Name Illustrations : 1. boost : Boosting Methods for Real and Simulated Data : 2. classifly : Explore classification models in high dimensions : 3. concord : Concordance and reliability : 4. dyn : Time Series Regression : 5. EMV : Estimation of Missing Values for a Data Matrix : 6. FactoMineR: Factor Analysis and Data Mining with R : 7. fda : Functional Data Analysis : 8. gclus : Clustering Graphics : 9. ump : Uniformly Most Powerful Tests : 10. TwoWaySurvival : Additiv Two-Way Hazards Modelling of : Right Censored Survival Data : Reference from http://cran.csie.ntu.edu.tw/src/contrib/PACKAGES.html : : In R : : : 1. Function for reading binary data: : : e.g., : : zz = file("D:/Test01.raw", "rb") # Readin binary data : : N = 2064384/2; # Numbers of data : : nb = 128; # image size = nb x nb : : k = 40; # 40th : : Img = readBin(zz, "integer", n=N,size=2) # using 2 bytes integer read data : : ZZ = matrix(Img[(1+(k-1)*nb*nb):((k)*nb*nb)],nb,nb); # assign 40th image to ZZ : : Co = rgb(0:255, 0:255, 0:255, max = 255); #Create gray map : : image(1:nb, 1:nb,ZZ,col = Co) # display 40th image : : 2. Function for data mining package: : : RWeka : Collected many mining tools like those in http://www.cs.waikato.ac.nz/ml/weka/. : : http://cran.cs.pu.edu.tw/src/contrib/Descriptions/RWeka.html : : 3. Function for Parallel Virtual Machine (PVM): : : rpvm : http://cran.cs.pu.edu.tw/src/contrib/Descriptions/rpvm.html -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.170.104.119