看板 NTPU-CSIE98 關於我們 聯絡資訊
餓死抬頭 又要考線代了 就照例來發個文騙騙文章數吧(誤) 第二章道通哥說是最簡單的一章 就好好來衝個高分吧 ----------------------以上是廢話-------------------------- 一.Determinants 行列式 矩陣求行列式值det(A) (1)1x1 matrices A = [a] det(A) = a (2)2x2 matrices a11 a12 A = [ ] a21 a22 det(A) = a11*a22 - a12*a21 (3)3x3 matrices a11 a12 a13 A = [ a21 a22 a23 ] a31 a32 a33 det(A) = a11(a22*a33-a23*a32)-a12(a21*a33-a23*a32+a13(a21*a32-a22*a31) a22 a23 而我們令minor矩陣 M11 = [ ] a32 a33 a21 a23 M12 = [ ] a31 a33 a21 a22 M13 = [ ] a31 a32 det(A)也等於a11*det(M11)-a12*det(M12)+a13*det(M13) i+j 又令 cofactor Aij = (-1) *det(Mij) => 一個nxn的矩陣 A a11 ,if n=1 det(A)= { } a11*A11+a12*A12+···+a1n*A1n ,if n>1 -1 ※若矩陣A的 det(A)≠0,A即為nonsingular,就會有反矩陣 A 證明: U = Ek Ek-1 ··E1 A det(U) = det(Ek)det(Ek-1)··det(E1)det(A) ≠0 ≠0 ≠0 若det(U)=0,則det(A)=0 得證 二.行列式的性質 T (1)det(A ) = det(A) (2)若矩陣A為三角矩陣,無論上三角(U)或下三角(L),det(A)=其對角線相乘 例: 1 2 3 A = [0 5 6] det(A) = 1*5*9 = 45 0 0 9 (3)矩陣中若任一列或任一行全為0,其行列式值=0 (4)矩陣中若有任兩行或任兩列值相同,其行列式值=0 例: 1 2 3 A = [4 5 6] det(A) = 0 4 5 6 (5)det(A+B) = det(A)+det(B) (6)det(AB) = det(A)det(B) (7)det(AB) = det(BA) T T T T T pf: det(AB) = det(AB ) = det(B A ) = det(B )det(A ) =det(B)det(A) =det(BA) 三.Row Operation det(EA) =det(E)det(A) (1)Operation I (也就是前一章的type I,行列交換) 0 1 E =[ ] det(E) = -1 1 0 det(EA) = det(E)det(A) = (-1)det(A) = -det(A) (2)Operation II (也就是前一章的type II,某行列值變α倍) 1 0 0 E =[0 1 0] det(E) = α 0 0 α det(EA) = αdet(A) (3)Operation III (也就是前一章的type III,行列倍數相加) 1 0 α E =[0 1 0] det(E) = 1 (因為為三角型矩陣) 0 0 1 det(EA) = det(A) 四. 若A為一nxn的矩陣,Aij為其cofactor(就是前面一的Aij) 公式: ai1*Aj1 + ai2*Aj2 + ai3*Aj3+····+ain*Ajn (1)若 i=j,原示 = a11*A11+a22*A22+···+ain*Ajn = det(A) (2)若 i≠j,則=0 證明: (道通哥說會考,原本說不會考的,突然改變主意....凸) 由(1)可得知 det(A) =ai1*Ai1+ai2*Ai2+··· (因為i=j) =aj1*Aj1+aj2*Aj2+··· a11 a12 ·· ··· 矩陣 A =[ ai1 ··· ] ··· aj1··· 而ai1要等於aj1才會有(1)的式子 亦即那兩列要為相等 而由determinants的性質可知 任兩行或兩列相等時其行列式值為0 得證 五.克拉馬公式 Cramer's Rule (1) adjoint of a matrice A11 A12 A13 T adjA =[ A21 A22 A23 ] A31 A32 A33 -1 1 A = adjA * ______ det(A) 證明: det(A) = A(adjA) = det(A)I -1 A(adjA)(det(A)) = I ^^^^^^^^^^^^^^^^ -1 ^^^^^^^^= A 得證 (2)求方程式解 AX=b a11 a12 a13 b1 A =[a21 a22 a23] b=[b2] a31 a32 a33 b3 b1 a12 a13 a11 b1 a13 a11 a12 b1 A1 = [ b2 a22 a23 ] , A2 = [ a21 b2 a23 ] , A3 = [ a21 a22 b2 ] b3 a32 a33 a31 b3 a33 a31 a32 b3 * An就是把A的第n行換成b det(A1) det(A2) det(A3) 則X1= _______ , X2= _______ ,X3= _______ det(A) det(A) det(A) det(Ai) => Xi = _______ for i= 1,2,3,...,n det(A) 證明: (我猜會考) AX = b -1 1 X = A b = _______ (adjA)b det(A) b1A1i+b2A2i+··+bnAni Xi = ______________________ det(A) det(Ai) =_________ det(A) 得證 -- 你在幹麻? 我在鋪梗阿 ○ ╯ ╰ /■\ ○/ /\ ╴/▔\ □□□□□□□□ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.204.166.225
ggssa2000:先END,推個。 11/02 00:42
frankho9:感謝分享^^ 11/02 19:18