看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙(下) 課程性質︰系必修 課程教師︰統一教學 開課學院:生農院 開課系所︰統一教學 考試日期(年月日)︰2008/04/17 考試時限(分鐘):15:30 ~ 17:20 (110min) 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 【考試須知】 1. 答案卷採正反雙面印製,可用鉛筆作答。 2. 踰越該題頁面作答,不予計分。 3. 不能使用計算機及電子辭典。 4. 無論計算或證明題,皆應詳述過程、理由;如未寫出詳細過程,一律不給分。 如引用未學過的定理或結果,應先予以證明。 1. (15%) Determine whether the improper integrals converge or not, and find the value of each that converges. (a) ∞ xdx (10%) (b) ∞ xdx (5%) ∫ ──── ∫ ──── 0 (1+x^2)^2 -∞ (1+x^2)^2 Ans: (a) 1/2 (convergent) (b) 1 (convergent) 2. (15%) Find dxdy , where R is the region bounded by ∫∫ ─── R y y = x, xy = 1 and x = 2 Ans: 4ln2 - 2 3. (15%) Find 16 4 ∫ ∫ √(y^3 + 4)dydx 0 √2 16‧√(17)^3 - 16 Ans: ────────── 9 4. (20%) Find all critical points of f(x,y) = x^3 + y^2 + 2xy - 4x - 3y - 2 and determine which gives relative maximum, relative minimum or a saddle point. Ans: There is a minimum point (1, 1/2, -21/4); there is a saddle point (-1/3, 11/6, -439/108) 5. (20% total, 5% each) Let f(x,y) = 1/2 ln(x^2 + y^2). Find df df d2f d2f d2f ──, ───, ───, ── + ── dx dxdy dx^2 dx^2 dy^2 x -2xy y^2-x^2 Ans: ────, ──────, ──────, 0 x^2+y^2 (x^2+y^2)^2 (x^2+y^2)^2 ┌ ┐ 6. (15%) Find the eigenvalues and their corresponding eigenvector of│2 3│ │4 1│ └ ┘ ┌ ┐ ┌ ┐ Ans: Case 1, λ= 5 ; R =│1│ Case 2, λ=-2 │ 3│ │1│ │-4│ └ ┘ └ ┘ -- Work, as if you don't need money, Love, as if you've never been hurt, Dance, as if no one can see you, Sing, as if no one can hear. Live, as if the Earth was the Heaven...... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.222.213