看板 NTU-Exam 關於我們 聯絡資訊
補充 ※ 引述《syuusyou (syuusyou)》之銘言: : 課程名稱︰線性代數 : 課程性質︰系必修 : 課程教師︰李明穗 : 開課學院:電機資訊學院 : 開課系所︰資訊系 : 考試日期(年月日)︰2010/11/11 : 考試時限(分鐘):150 : 是否需發放獎勵金:是 : (如未明確表示,則不予發放) : Problem 1 (24 points) : (True of False) Please provide brief explanation if the answer is positive. If : the answer is negative, please give a counterexample. Otherwise, no credits : will be given. 第三題與第五題亦同,正確須解釋,錯誤舉反例。 : (a) If A and B are square matrices, and AB is invertible, then A and B are : invertible. : (b) If A is an nxn matrix and the system Ax = 0 has nontrivial solutions, : then A is not invertible. : (c) If AB = -BA, the nat least one of A, B is not invertible. : (d) Let A, B be nxn matrices such that AB = I, then BA = I. : (e) If A is an mxn matrix and n < m, then the equation Ax = 0 will have : infinite many answers. : (f) If the reduced row echelon form of [A b] contains a zero row, then : Ax = b has infinitely many solutions. : (g) Let A be an mxn matrix. Then the rank of A is n if and only if the : equation Ax = b has at most one solution for each b in R^m. : (h) If a system of linear equation in R has two different solutions, then : it must have infinitely many solutions. : Problem 2 (8 points) : ┌ ┐ : │ 1 0 1 │ : │ 0 1 2 │ : Let A = │ 2 -1 0 │ : │ 1 -1 -1 │ : └ ┘ : (a) Please find a basis of all x's that satisfy Ax = 0. : (b) Find a basis of all b's for which Ax = b has feasible solutions. : Problem 3 (15 points) : Determine whether or not the following are subspace of R^2. 是請說明,否請舉反例。 : (a) {(x1, x2) | x1 + x2 = 0} : (b) {(x1, x2) | x1*x2 = 0} : (c) {(x1, x2) | x1 = 3*x2} : (d) {(x1, x2) | x1 = |x2|} : (e) {(x1, x2) | x1 = 3*x2 + 1} : Problem 4 (9 points) : ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ : │ 3│ │ 2│ │ 2│ │-1│ │-1│ │ 5│ : T: R^3 -> R^3 by T│-2│=│ 1│, T│ 1│=│ 3│, T│ 3│=│-1│; : │ 1│ │-3│ │-3│ │ 2│ │ 2│ │10│ : └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ : ┌ ┐ : │ 5│ : What is T│-1│? : │10│ : └ ┘ : Problem 5 (12 points) 前兩小題之 T 形如: x y z ┌ ┐ x│ │ y│ │ z│ │ └ ┘ x,y,z為空間中右手系坐標。 : (a) Let T: R^3 -> R^3 be the transformation which rotate 60 degrees along : z-axis and then reflect through the xy-plane. Please write down T. : (b) Let T': R^3 -> R^3 be the transformation which reflect throught the : xy-plane and then rotate 60 degrees along z-axis. Please write down : T'. : (c) Let A belongs to R^n, B belongs to R^m, and T is the linear : transformation from A to B. Can we always find T' which works as the : inverse transform from B back to A? (Please state your reason) : Problem 6 (20 points) 前三小題答案形式為: span { vector, vector, ... } 若僅列出basis但未註明span會酌予扣分。(考完聽助教講的) : ┌ ┐ : │ 1 4 5 6 9│ : Let A = │ 3 -2 1 4 1│ : │-1 0 -1 -2 -1│ : │ 2 3 5 7 8│ : └ ┘ : (a) Find the row space of A. : (b) Find the column space of A. : (c) Find the null space of A. : (d) Find rank(A) and nullity(A). : Problem 7 (12 points) : Which of the followings are linear? 是請說明,否請舉反例。 : (a) T: R^(nxn) -> R by T(A) = tr(A) tr(A):trace of A,矩陣A主對角線上元素和 : (b) T: R^(nxn) -> R by T(A) = det(A) : (c) T:R^3 -> R^2 by T(a, b, c) = (a-b, 2c) : (d) T: R2[x] -> R3[x] by T(f(x)) = xf(x) + f'(x) Ri[x]:i次多項式函數 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.91.122