看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰分析導論優一 課程性質︰數學系大二必修 課程教師︰王振男 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2014/10/21 考試時限(分鐘):190 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. (a) (10%) Prove that Cantor's Intersection Theorem holds for nested compact sets in an arbitrary metric space, namely, if K , K , ... is a nested 1 2 sequence of nonempty compact sets in a metric space S, then ∞ ∩ K ≠ψ j=1 j (b) (10%) In (a), can we replace "compact sets" by "closed and bounded sets"? n n 2 2. Let S = {x = (x , x , ..., x ) ∈ |R (n > 1) : Σ x = 1}. Assume that f 1 2 n k=1 k is continuous function on S. (a) (10%) If f(x)≠0 for all x∈S and f(x ) > 0 for some x ∈S. Show that 0 0 there exists a constant c > 0 such that f(x) ≧ c for all x∈S. (b) (10%) Show that there exists a pair of diametrically opposite points on S at which f assumes the same value, i.e., for some x∈S, f(x) = f(-x). 3. (a) (10%) Let f: S → T be a continuous function. Assume that S is compact. Show that for any Cauchy sequence {x } in S, {f(x )} is a Cauchy n n sequence in T. (b) (10%) Does the result in (a) remain true if we remove the compactness assumption on S? 4. (20%) Let f be a real-valued function defined on [a, b]. The graph of f on [a, b] is given by 2 G(f) = {(x, f(x))∈|R : x∈[a, b]} Show that f is continuous on [a, b] iff G(f) is closed and connected in 2 |R . 5. (a) (10%) Let (M, d) be a metric space, define d(x, y) d'(x, y) =───── 1 + d(x, y) Prove that d' is also a metric for M. (b) (10%) Is any open set in (M, d) open in (M, d') and vice versa? -- 第01話 似乎在課堂上聽過的樣子 第02話 那真是太令人絕望了 第03話 已經沒什麼好期望了 第04話 被當、21都是存在的 第05話 怎麼可能會all pass 第06話 這考卷絕對有問題啊 第07話 你能面對真正的分數嗎 第08話 我,真是個笨蛋 第09話 這樣成績,教授絕不會讓我過的 第10話 再也不依靠考古題 第11話 最後留下的補考 第12話 我最愛的學分 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.76 ※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1413898936.A.060.html ※ 編輯: xavier13540 (140.112.249.76), 10/21/2014 21:45:16 ※ 編輯: xavier13540 (140.112.249.76), 10/21/2014 21:57:31
t0444564 : 已收錄 10/22 04:27
※ 編輯: xavier13540 (140.112.249.76), 10/24/2014 00:42:38
xavier13540 : 2.的"n>2"改成"n>1"(雖然沒差拉XD) 10/24 00:43
t0444564 : 已針對修改 10/24 01:03