推 t0444564 : 已收錄 12/03 21:43
課程名稱︰分析導論優一
課程性質︰數學系大二必修
課程教師︰王振男
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2014/12/02
考試時限(分鐘):180
試題 :
1. (20%) Let f(t) be a function defined on [0, 1] with f(t) = (sin t)/t for t >
1
0. Show that I = ∫f(t)dt exists. Without using Taylor's series of sin t,
0
derive that
3
I < ─- cos 1
2
1 sin xt
You need to justify all your arguments. Hint: consider g(x) = ∫ ─── dt.
0 t
2. (20%) Show that for every x ∈ (0, 2π), the series
inx
∞ e
Σ ──
n=1 n
converges and conclude that both series
∞ sin nx ∞ cos nx
Σ ─── and Σ ───
n=1 n n=1 n
n ikx
converge for each x ∈ (0, 2π). Hint: you may need to estimate Σ e .
k=1
3. (20%) Show by an example that a continuous function on [a, b] is not
necessarily of bounded variation on [a, b]. How about if we replace
"continuity" by "differentiability"?
∞ ∞
4. (a) (10%) If Σ a diverges, must Σ (log n) a diverge too?
n=2 n n=2 n
∞
(b) (10%) Given that Σ a converges, where each a > 0. Prove that
n=1 n n
∞ 1/2
Σ (a a )
n=1 n n+1
also converges. Show that the converse is also true if {a } is monotonic.
n
5. (20%) Let f and g be continuous functions mapping from [0, 1] to itself.
Assume that the compositions of f and g are commutative, i.e., f。g = g。f.
Then f and g agree at some point of [0, 1]. Hint: proved by contradiction.
--
第01話 似乎在課堂上聽過的樣子 第02話 那真是太令人絕望了
第03話 已經沒什麼好期望了 第04話 被當、21都是存在的
第05話 怎麼可能會all pass 第06話 這考卷絕對有問題啊
第07話 你能面對真正的分數嗎 第08話 我,真是個笨蛋
第09話 這樣成績,教授絕不會讓我過的 第10話 再也不依靠考古題
第11話 最後留下的補考 第12話 我最愛的學分
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.76
※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1417592229.A.161.html