看板 NTUBIME100HW 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板] 作者: twoyearsold (兩歲最近酷酷的) 看板: NTU-Exam 標題: [試題] 95暑 周青松 微積分甲上 期末考 時間: Sat Aug 11 14:55:07 2007 課程名稱︰微積分甲上 課程性質︰ 課程教師︰周青松 開課學院: 開課系所︰ 考試日期(年月日)︰95年暑假 考試時限(分鐘): 是否需發放獎勵金: (如未明確表示,則不予發放) 是 試題 : x t I. Let f be everywhere continuous and set F(x)=∫ [ t∫ f(u)du ] dt 0 1 Find (A) F'(1) (B) F''(x) II. Let f be continuous on [a,b]. If G is any antiderivative for f on [a,b], b then ∫ f(t)dt = G(b) - G(a) a 2 2 x y III. The base of a solid is the region enclosed by the ellipse -- + -- = 1 2 2 a b     Find the volume of the solid given that each cross section prependicular to the x-axis is an isosceles triangle with base in the region and altitude equal to one-half the base. IV. (A) show that, for a>0 dx -1 x ∫ ------------- = sin --- + c 2 2 a √(a - x ) (B) show that, for a≠0 dx 1 -1 x ∫ ------------- = -- Tan --- + c 2 2 a a a + x V. Determine A,B and c so that y= Acoshcx + Bsinhcx satisfies the condition y''-9y = 0, y(0) = 2, y'(0) = 1, take c>0. (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.234.180 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.8.73