※ [本文轉錄自 NTU-Exam 看板]
作者: twoyearsold (兩歲最近酷酷的) 看板: NTU-Exam
標題: [試題] 95暑 周青松 微積分甲上 期末考
時間: Sat Aug 11 14:55:07 2007
課程名稱︰微積分甲上
課程性質︰
課程教師︰周青松
開課學院:
開課系所︰
考試日期(年月日)︰95年暑假
考試時限(分鐘):
是否需發放獎勵金:
(如未明確表示,則不予發放) 是
試題 :
x t
I. Let f be everywhere continuous and set F(x)=∫ [ t∫ f(u)du ] dt
0 1
Find (A) F'(1)
(B) F''(x)
II. Let f be continuous on [a,b]. If G is any antiderivative for f on [a,b],
b
then ∫ f(t)dt = G(b) - G(a)
a 2 2
x y
III. The base of a solid is the region enclosed by the ellipse -- + -- = 1
2 2
a b
Find the volume of the solid given that each cross section prependicular
to the x-axis is an isosceles triangle with base in the region and
altitude equal to one-half the base.
IV. (A) show that, for a>0
dx -1 x
∫ ------------- = sin --- + c
2 2 a
√(a - x )
(B) show that, for a≠0
dx 1 -1 x
∫ ------------- = -- Tan --- + c
2 2 a a
a + x
V. Determine A,B and c so that y= Acoshcx + Bsinhcx satisfies the condition
y''-9y = 0, y(0) = 2, y'(0) = 1, take c>0.
(每大題均20分)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.166.234.180
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.166.8.73