作者???
看板NTUBIME100HW
標題[微積] 汗水期末考古
時間Fri Jun 13 20:52:30 2008
一 Find a point on the surface z = 8 - 3x^2 - 2y^2 at which the tangent plate
is perpendicular to the line x = 7 - 3t, y = 12 + 8t, z = 10 - t.(20%)
二 Let D={(x,y,z) | x^2 + y^2 + z^2 <= 90} be a solid and the temperature at
the point (x,y,z) on the D is T(x,y,z) = 3xy + 4x^2 + z^2.
三 Let D = {(x,y,z) | x^2 + y^2 + z^2 <= 49, z >= 2} be a solid with the
density den(x,y,z) = 2z.
(i)Find the volume of D.(7%)
(ii)Find the mass of D.(8%)
(iii)Find the center of mass of D.(10%)
3 √(9+x^2)
四 Find the integral ∫ [∫ √(x^2 + y^2) dy] dx.(10%)
0 0
[Hint: Use polor coordinates]
五 Let D be the triangular region bounded by 3 lines x = 0, y = 2,
x - 2y = 0, and C = (偏微分)D be the bounary of D.
Find the line integral ∫ (x + 2xy)dx + (x^2 + 3x)dy.(15%)
c
其實我是為了求解答才發文的
我相信大家手上都有了
我期末考考古題第一題題目就看不懂
聽了華均的說明還是不會做
第二題我也不會做
為什麼我的z自動消掉ꐨ汗)
第三題我用
E={(ρ,φ,θ) | 2secφ <= ρ <= 7, 0 <= φ <= arccos(2/7), 0 <= θ <= 2π}解
(算式很長 PTT很糟 跳下面問題看比較快)
-----------------------------------------------------------------
arccos(2/7) 7 2π
∫ ∫ [∫ ρ^2*sinφ dθ] dρ dφ
0 2secφ 0
-----------------------------------------------------------------
arccos(2/7) 7
=2π∫ [∫ ρ^2*sinφ dρ] dφ
0 2secφ
-----------------------------------------------------------------
arccos(2/7)
=2π∫ [(1/3)*7^3*sinφ - (1/3)*(2secφ)^3*sinφ] dφ
0
-----------------------------------------------------------------
arccos(2/7)
=2π∫ [(1/3)*7^3*sinφ] dφ
0
arccos(2/7)
- 2π∫ [(1/3)*(2secφ)^3*sinφ] dφ
0
-----------------------------------------------------------------
arccos(2/7)
=2π*(sin(arccos(2/7)))*7^3 - 2π*(2/3)∫ [(secφ)^3*sinφ] dφ
0
-----------------------------------------------------------------
arccos(2/7)
=2π*3√5*7^3 - 2π*(2/3)∫ [(secφ)^3*sinφ] dφ
0
-----------------------------------------------------------------
其中(上面只是說明為什麼我會有這個問題,這裡才是問題)
-----------------------------------------------------------------
∫(secφ)^3*sinφ] dφ
-----------------------------------------------------------------
=∫tanφ(secφ)^2 dφ
-----------------------------------------------------------------
而d(tanφ)=(secφ)^2 dφ
-----------------------------------------------------------------
故
∫tanφ(secφ)^2 dφ
-----------------------------------------------------------------
=∫tanφd(tanφ)
-----------------------------------------------------------------
=(1/2)(tanφ)^2
-----------------------------------------------------------------
-----------------------------------------------------------------
代回原式
arccos(2/7)
2π*3√5*7^3 - 2π*(2/3)∫ (secφ)^3*sinφ] dφ
0
-----------------------------------------------------------------]
=2π*3√5*7^3 - 2π*(2/3)[(1/2)*(tan(arccos(2/7)))^2 - (1/2)*(tan0)^2]
-----------------------------------------------------------------
=2π*3√5*7^3 - 2π*(2/3)[(1/2)*(3√5/2)^2 - (1/2)*(tan0)^2]
-----------------------------------------------------------------
天啊!
為什麼會出現tan0啊(暈
第五題教過嗎?
誰來救救我啊!(吶喊)
(發現換回windows就有積分符號可以打了 不過還是沒有偏微分...)
※ 編輯: benimut 來自: 61.231.8.26 (06/13 22:36)
推 chaochienyao:你打得好辛苦喔! 06/13 22:47
推 hasheesh:有看有推! 06/13 23:20
推 hygeiasmiuk:為什麼不能有tan0 06/14 11:34
→ benimut:因為tan0不存在吧 06/14 11:37
推 hygeiasmiuk:tan0=0 tan(π/2)才不存在 06/14 11:44
→ benimut:說的也是 看來我耍白痴花了這麼多時間精力啊(汗) 06/14 15:05
→ benimut::那這個答案(2744√5π-45)/4似乎相當扯 有人算出來嗎? 06/14 15:10
→ benimut:或者說這種算法到底對還是錯뀠 06/14 15:10
→ benimut:我另外用 06/14 15:50
→ benimut:F={(x,y,z)|0 <=r<= √(7^2 - z^2),0 <=θ<= 2π,2<=z<=7} 06/14 15:51
→ benimut:------------------------------------------------------ 06/14 15:51
→ benimut: 7 06/14 15:51
→ benimut:2π∫ √(7^2 - z^2)dz 06/14 15:52
→ benimut: 2 06/14 15:52
→ benimut:------------------------------------------------------ 06/14 15:53
→ benimut:let z = 7sinφ 06/14 15:53
→ benimut: √(7^2 - z^2) = 7cosφ 06/14 15:53
→ benimut: φ = arcsin(z/7) 06/14 15:54
→ benimut: dz = 7cosφ 06/14 15:54
→ benimut:代回原式 06/14 15:54
→ benimut: π/2 06/14 15:54
→ benimut:2π∫ [(7cosφ)^2]dφ 06/14 15:54
→ benimut: arcsin(z/7) 06/14 15:55
→ benimut:------------------------------------------------------ 06/14 15:55
→ benimut: π/2 06/14 15:55
→ benimut:2π*7^2∫ [(cos2φ + 1)/2]dφ 06/14 15:55
→ benimut: arcsin(z/7) 06/14 15:56
→ benimut:------------------------------------------------------ 06/14 15:56
→ benimut: π/2 06/14 15:56
→ benimut:=2π*7^2[1/2sin2φ + 1/2φ] 06/14 15:56
→ benimut: arcsin(z/7) 06/14 15:56
→ benimut:------------------------------------------------------ 06/14 15:57
→ benimut: π/2 06/14 15:57
→ benimut:=2π*7^2[sinφcosφ + 1/2φ] 06/14 15:57
→ benimut: arcsin(z/7) 06/14 15:57
→ benimut:------------------------------------------------------ 06/14 15:58
→ benimut:=-84√5 + 49π - arcsin(2/7) 06/14 15:58
→ benimut:答案竟然不同啊 06/14 15:58
推 chaochienyao:辛苦了! 06/14 16:10