看板 NTUBIME103HW 關於我們 聯絡資訊
九六期末第三題的B B) Let f'(x) = kf(x) for all x in some interval. Prove that f(x) = Ce^kx , where C is an arbitrary constant. 兩個證明方法 (M1) set f(x)=ce^kx => f'(x)=kce^kx=k*f(x) (M2) 這題其實是Seperable ODE set y=f'(x) we can rewrite the equation as follow dy ---- = k y dx seperate x y dy ---- = k dx y intergrate both sides ln y = kx + C => y= e^(kx+C) = e^kx * e^C = C' e^kx (((C'=e^c))) 然後cross section perpendicular to the x-axis就是截面積跟x軸垂直 繞著X軸旋轉的意思 以上 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.132.83.187
ss355227:神!!! 01/08 14:50