作者steve1012 (steve)
看板NTUBIME103HW
標題Re: 青松考古題 2
時間Sat May 14 15:43:47 2011
※ 引述《ss355227 (前祐)》之銘言:
: ※ [本文轉錄自 NTU-Exam 看板 #1AdpwufY ]
: 作者: iwantowaylaw (我要成為太鼓達人) 看板: NTU-Exam
: 標題: [試題]
: 時間: Thu Sep 3 11:57:43 2009
: 課程名稱︰ 暑修微積分甲下第二次期中考
: 課程性質︰
: 課程教師︰ 周青松
: 開課學院:
: 開課系所︰
: 考試日期(年月日)︰2009/9/3
: 考試時限(分鐘):2小時
: 是否需發放獎勵金:是
: (如未明確表示,則不予發放)
: -------------------------------
: 題目中好像有些筆誤
: 我先不改喔 大家應該知道~
: -------------------------------
: 試題 :
: Make sure to give sufficient reason in each problem or you will NOT get any
: credit for your answer.
: A.
: (a)
: Set a = a1i + a2j + a3k
: and b = b1i + b2j + b3k
: Show that a x b = (a2b3-a3b2)-i(a1b3-a3b1)j+(a1b2-a2b1)k
: 無言不知道要證啥
: (b)
: Set a = a1i + a2j + a3k
: b = b1i + b2j + b3k
: c = c1i + c2j + c3k
: | a1 a2 a3 |
: Show that (a x b) ‧ c = | b1 b2 b3 |
: | c1 c2 c3 |
: p.668 Example 3
: B.
: (a)Find f(t) given that f'(t) = 2costi-tsint^2+2tk and f(0)=i+3k
: 應該不難吧 我算 f(t) = 2sint + 1 i + 1/2 cost^2 -1/2 j + t^2 +3 k
: (b)Find f(t) given that f'(t) = ti-t(1+t^2)^(-1/2)+te^tk and f(0)=i+2j+3k
: 重複
: C.
: (a)
: Show that if γ is a differentiable vector function of t ,then the function
: r = ║γ║ is differentiable at where it is not zero and
: dγ dr
: γ‧ ── = r ──
: dt dt
: p.703 (14.2.3) 證明在p.704上方
: (b)
: Show that for each integer n and all γ≠0 we have ▽r^n = nr^(n-2)γ
: 未知
: D.
: (xy)^2
: Set g(x,y) = ─── if (x,y) ≠ (0,0)
: x^4+y^4
: 0 if (x,y) = (0,0)
: dg dg
: (a)Show that ─(0,0) and ─(0,0) both exist and evaluate their values
: dx dy
: (b)Show that lim g(x,y) doesn't exist
: (x,y)→(0,0)
: p.785 第29題 要練習過吧
: E.
: (a)
: Find all function with gradient yzi + (xz+2yz)j + (xy+y^2)k
: 未知
這個很重要 在後面line integral 的時候會用到
物理裡面是保守場的條件
首先根據Gradient的定義
set there are some functions F satisfy the condition
then
*[1;33;40m del F = yz i + (xz+2yz) j + (xy+y^2)k
*[m
so we have
partial F/ partial x = yz ----(1)
partial F/ partial y = xz+2yz ----(2)
partial F/ partial z = xy+y^2 ----(3)
(1) => integrate both side with respect of x
F = xyz + G(y,z)
Fy = (2) = xz + Gy(y) =xz+2yz
so Gy(y,z) = 2yz => G(y,z) = zy^2+c c is a constant
Fz = (3) = xy+Gz(z) = xz+y^2 indeed
so the general solutions of such partial differentiation equation
is F = xyz + zy^2 + C
the C is decided by the boundary condition
btw
f is a conservative force
F is the potentail on the field
and line integral
b
∫f。dr = F(b) - F(a) (Fundamental theorem of Line Integrals)
a
: (b)
: 2xy
: Set f(x,y) = ─── if (x,y) ≠ (0,0)
: x^2+y^2
: 0 if (x,y) = (0,0)
: Show that f is not differentiable at (0,0)
: 應該是從不同方向逼近原點的值不同 所以不連續 所以不能微分吧!?
: ------------------------------------------
: 感覺這篇過多非習題題目......
: ------------------------------------------
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.132.83.187
推 ss355227:這題他好像還沒教到拉 不會的不用緊張喔 05/14 18:34
推 phishingphi:C is decided by the I.C. 才是吧? 05/19 21:21
推 phishingphi:然後如果題目所給的函數是F 求線積分 從a積到b F dot 05/19 21:24
→ phishingphi:dr,必須先驗證del cross F = 0 才知道F是保守場之後 05/19 21:25
→ phishingphi:才能帶起點終點( F(b)-F(a) ) 05/19 21:26
→ steve1012:無旋場就是保守場 所以crossF=0就是保守場 05/19 22:44
→ steve1012:另外有del的反函數跟cross F=0是等價的 05/19 22:45