看板 NTUBIME103HW 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板 #18oeEZE8 ] 作者: Julibea (Julia) 看板: NTU-Exam 標題: [試題] 96暑 周青松 微積分甲下期末考 時間: Fri Sep 12 22:58:42 2008 課程名稱︰微積分甲下(暑修) 課程性質︰ 課程教師︰周青松 開課學院: 開課系所︰ 考試日期(年月日)︰2008/09/09 考試時限(分鐘):120分鐘 (8:10~10:10) 是否需發放獎勵金:yes, thanks 試題 : I. A) Find F(t) given that F'(t)= 2cost i - t(sint^2) j + 2t k F (0)= i + 3 k B) Show that, if γis differentiable vector funtion of t, where r =∥γ∥> 0, d γ 1 dγ then ── (──) = ── [(γ x ──) x γ] dt r r^3 dt II. Let γ= x i + y j + z k and r =∥γ∥> 0 A) Prove that, for each interger n, ▽r^n = nr^(n-2)γ B) Find ▽(e^r) III. A) Find the directional derivative of the function f(x,y,z)= 2x(z^2) cosπy at the point P(1,2,-1) toward the point Q(2,1,3) B) Use the chain rule to find the rate of change of f(x,y,z)= (x^2)y + zcosx with respect to t along the twisted curve γ(t)= t i + t^2 j + t^3 k IV. A) Use double integration to calculate the area of the region Ω enclosed by y=x^2 and x+y=2 B) Calculate the volume within the cylinder x^2 + y^2 = b^2 between the planes y+z=a and z=0 given that a≧b>0. V. A) Find the mass of a solid riht circular cylinder of radius r and height h given that the mass density varies directly with distance from the lower base. B) Evaluate the triple integral ∫∫∫ 2ye^x dxdydz , where T is the solid given by T 0≦y≦1, 0≦x≦y, 0≦z≦x+y (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.222.196 ※ 編輯: Julibea 來自: 140.112.222.196 (09/12 23:00) u19901006:轉錄至看板 b982040XX 06/19 13:56 tom5707:轉錄至看板 b982040XX 06/20 00:28 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 223.137.230.120