看板 NTUBIME103HW 關於我們 聯絡資訊
※ 引述《stan999950 (鵬鵬鵬鵬鵬鵬鵬鵬鵬鵬鵬)》之銘言: : ※ [本文轉錄自 NTU-Exam 看板 #1CXl86h6 ] : 作者: sr333444 (欸啥) 看板: NTU-Exam : 標題: [試題] 98暑修 周青松 微積分甲下 期末考 : 時間: Wed Sep 8 10:16:34 2010 : 課程名稱︰微積分甲下 : 課程性質︰暑修 : 課程教師︰周清松 : 開課學院:理學院 : 開課系所︰數學系 : 考試日期(年月日)︰2010/9/9 : 考試時限(分鐘):120分鐘 : 是否需發放獎勵金:是 : (如未明確表示,則不予發放) : 試題 : : It's necessary to explain all the reasons in detail and show all of your : work on the answer sheet; Or you will NOT get any credits. If you used any : theorems in textbook or proved in class, state it carefully and explicitly. : 1.(a)For each integer n and r≠0, we have ▽r^n = nr^(n-2)r. Here : r=∥r∥ and r = xi+yj+zk. Note that if n is positive and even, : the result holds at r=0. 這題...直接微應該就可以得到 至於 hold at r=0 因為r沒有在分母了阿(n>=2) 當然可以等於0 ~~~詳細的我不知道怎麼寫~~~ ~~~李維峻help~~~~me : (b)Assume that ▽f(x) exists. Prove that, for each integer n, we have : n n-1 : ▽f (x)=nf (x)▽f(x). 也是直接微搂0.0 ----------------------------不過不考證明這不會出吧XDDD------------ : 2.(a)Find the directional derivative of f(x,y)=ln(x^2+y^2) at P(0,1) : in the direction of 8i+j. ▽f(x,y)= (2x / x^2+y^2)i + (2y / x^2+y^2)j ▽f(0,1)= 0 i + 2j ▽f(0,1)‧(8,1) = 2 ...... : (b)Find the directional derivative of f(x,y)= xe^(y^2-z^2) at (1,2,-2) : in the direction of increasing t along the path : r(t)= ti+2cos(t-1)j-2e^(t-1)k ▽f(x,y,z)= ( e^(y^2-z^2) )i + ( 2yxe^(y^2-z^2) )j + ( -2zxe^(y^2-z^2) )k ▽f(1,2,-2)= (0,4,4) t=1 r(t)=(1,2,-2) v(t)= i + ( -2sin(t-1) )j + ( -2e^(t-1) )k u = v(1) / |v(1)| =(1,0,-2)/ 5^0.5 ▽f(1,2,-2)‧u = -8 / 5^0.5 乾好難算 有沒有算錯啊 : 3.(a)Use the chain rule to find the rate of change of f(x,y,z)=x^2y+zcosx : with respect to t along the twisted cubic r(t)=ti+t^2j+t^3k 意思就x=t y=t^2 z=t^3 反正df(x,y,z)/dt = partial f/partial x * dx/dt i+ y....j + z....k 答案.... df(x,y,z)/dt = (2xy-zsinx)*1 i + x^2 * 2t j + cosx * 3t^2 k 最後算 |df(x,y,z)/dt| = ....... 乾是這樣嗎 我都囧了 : (b)Find the rate of change of f(x,y,z)=ln(x^2+y^2+z^2) with respect to : t along the twisted cubic r(t)=sinti+costj+e^(2t)k 好煩=.= : 4.(a)Calculate by double integration the area of the bounded region determined : by the curves x^2=4y, 2y-x-4=0. 重點就是要找出範圍 然後對dxdy積分就好 可以解出交點 x= 6 or -2 大概知道圖後 -2 <= x <= 6 x^2 /4 <= y <= 2 + x/2 一組實數,一組就有未知數這樣 積分吧 範圍就照那樣寫 先積y 有未知數 = 積分-2~6 (2 + x/2 - x^2/4) dx = 2x + x^2 / 4 - x^3 / 12 |-2~6 = 16/3 乾好醜 我累了 : (b)Calculate the volume within the cylinder x^2+y^2=b^2 between the planes : y+z=a and z=0 given that a>=b>0. : 5.(a)Use triple integration to find the volume of the tetrahedron T bounded : by x+y+z=1 in the first octant. : (Hint: 0≦z≦1-x-y, 0≦y≦1-x, 0≦x≦1) : (b)Calculate the mass of the solid 0≦x≦a, 0≦y≦b, 0≦z≦c, with the : density funtion ρ(x,y,z)=xyz. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.45.138.150