看板 NTUBIME103HW 關於我們 聯絡資訊
※ 引述《sky2857 (楷中)》之銘言: : ※ [本文轉錄自 NTU-Exam 看板 #18oeEZE8 ] : 作者: Julibea (Julia) 看板: NTU-Exam : 標題: [試題] 96暑 周青松 微積分甲下期末考 : 時間: Fri Sep 12 22:58:42 2008 : 課程名稱︰微積分甲下(暑修) : 課程性質︰ : 課程教師︰周青松 : 開課學院: : 開課系所︰ : 考試日期(年月日)︰2008/09/09 : 考試時限(分鐘):120分鐘 (8:10~10:10) : 是否需發放獎勵金:yes, thanks : 試題 : : I. A) Find F(t) given that F'(t)= 2cost i - t(sint^2) j + 2t k : F (0)= i + 3 k : B) Show that, if γis differentiable vector funtion of t, : where r =∥γ∥> 0, : d γ 1 dγ : then ── (──) = ── [(γ x ──) x γ] : dt r r^3 dt : II. Let γ= x i + y j + z k and r =∥γ∥> 0 : A) Prove that, for each interger n, ▽r^n = nr^(n-2)γ 以上好無聊 : B) Find ▽(e^r) 這好像要算一下吧 e^r * γ/r吧 : III. A) Find the directional derivative of the function : f(x,y,z)= 2x(z^2) cosπy : at the point P(1,2,-1) toward the point Q(2,1,3) : B) Use the chain rule to find the rate of change of : f(x,y,z)= (x^2)y + zcosx : with respect to t along the twisted curve : γ(t)= t i + t^2 j + t^3 k 好煩XD : IV. A) Use double integration to calculate the area of the region : Ω enclosed by y=x^2 and x+y=2 9/2嗎? = = : B) Calculate the volume within the cylinder x^2 + y^2 = b^2 : between the planes y+z=a and z=0 given that a≧b>0. ab^2 pi : V. A) Find the mass of a solid riht circular cylinder of radius r : and height h given that the mass density varies directly : with distance from the lower base. 圓筒 密度應該是 kz吧 然後就開始積分了 1/2 k h^2 再乘上圓面積吧 所以 1/2 k h^2 pi r^2 : B) Evaluate the triple integral : ∫∫∫ 2ye^x dxdydz , where T is the solid given by : T : 0≦y≦1, 0≦x≦y, 0≦z≦x+y 重複 : (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.4.202