看板 NTUBIME104HW 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板 #1DCVxtOU ] 作者: jesonk (東區) 看板: NTU-Exam 標題: [試題] 99上 周青松 微積分甲上 期末考 時間: Sun Jan 16 04:09:24 2011 課程名稱︰微積分甲上 課程性質︰必修 課程教師︰周青松 開課學院:管理學院、生農學院、理學院 開課系所︰工管系科管組、生工系、生機系、地質系 考試日期(年月日)︰2011/1/10 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 試題 : Warning : Each part from I - V is of 20 points. Please write down your answer in the answer sheets in details as well as possible. I. A. Let f be a continuous function on [a,b]. If G is any antiderivative for f on [a,b], show that b ∫ f(t)dt=G(b)-G(a). a B. Prove that for all positive numbers a and all rational numbers p/q, p/q a a ∫ dt/t = p/q∫ dt/t. 1 1 II. A. Compare the following two statements, d/dx[∫f(x)dx] and ∫d/dx[f(x)]dx. B. Evaluate the integral 1/2 3 1/2 ∫x^5(x^2+1) dx. 0 III. -x^2/2 A. Let f(x)=e for all x. (a)Determine the symmetry of the graph and find the asymptotes. (b)On what intervals does f increases?decrases? (c)Find the extreme values. (d)Determine the concavity of the graph and find the points of inflection. (e)Sketch the graph. B. Find 3x d/dx[(x^2+1) ]. IV. A. Show that for a>0, 1/2 ∫dx/(a^2-x^2) =arcsin(x/a)+c. B.Show that arctanhx=1/2ln(1+x/1-x),-1 < x < 1. V.Prove the following equations. n n-1 n-2 A. For n屬於N, ∫sin xdx = (-1/n)sin x cosx + (n-1/n)∫sin xdx. n n-2 n-2 B. For n=>2, ∫sec xdx = (1/n-1)sec x tanx + (n-2/n-1)∫sec xdx. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.80
sophiachen26:原PO滿分 03/03 21:48
※ 發信站: 批踢踢實業坊(ptt.cc) ※ 轉錄者: fanif (118.167.36.15), 時間: 01/03/2012 23:24:08
fanif :如果真的原PO滿分就好了 01/03 23:33