看板 NTUEE107HW 關於我們 聯絡資訊
Qm(x)={(x^2-1)^m}^(m)->指微分m次 (m=0,1,2,3.....) ^^^ Prove: Qm"(x)(1-x^2)+Qm'(x)(-2x)+m(m+1)Qm(x)=0 The anwer as following {(1-x^2)(x^2-1)^m}^(m+2) + {(x^2-1)^m+1}^(m+2)=0 ^^^^^^^^^^^^^^^^ ^^^^^^^^^^ ()內相乘後一負一正 Qm(x)={(x^2-1)^m}^(m) => Qm'(x)={(x^2-1)^m}^(m+1) Qm"(x)=......^(m+2)-----(*) 上式 => (1-x^2){(x^2-1)^m}^(m+2)+{C(m+2) take 1}(-2x){(x^2-1)^m}^(m+1)+{C(m+2) take 2}* ^^^^^^^^^^^^^ 表組合C X 取 Y (-2){(x^2-1)^m}^(m+2)+{(m+1)(2x)(x^2-1)^m}^(m+1)=0 From (*) (1-x^2)Qm"(x)+m+2(-2x)Qm'(x)-(m^2+3m+2)Qm(x)+(m+1)Qm'(x)(2x)+Qm(x)(2m ^2+4m+2)=0 化簡 => Qm"(x)(1-x^2)+Qm'(x)(-2x)+m(m+1)Qm(x)=0------(proved) It is a very interesting problem with concise anwer,right? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.237